




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.《掷铁饼者》取材于希腊的现实生活中的体育竞技活动,刻画的是一名强健的男子在掷铁饼过程中最具有表现力的瞬间.现在把郑铁饼者张开的双臂近似看成一张拉满弦的“弓”,郑铁饼者的手臂长约为米,肩宽约为米,“弓”所在圆的半径约为1.25米,则郑铁饼者双手之间的距离约为()A.1.01米 B.1.76米C.2.04米 D.2.94米2.设,则的值为()A.0 B.1C.2 D.33.函数的一个零点所在的区间是()A. B.C. D.4.已知函数在上的值域为R,则a的取值范围是A. B.C. D.5.下列函数中,在定义域内既是单调函数,又是奇函数的是()A. B.C. D.6.如图,已知正方体中,异面直线与所成的角的大小是A.B.C.D.7.设函数的值域为R,则实数a的取值范围是()A.(-∞,1] B.[1,+∞)C.(-∞,5] D.[5,+∞)8.设函数,则下列说法错误的是()A.当时,的值域为B.的单调递减区间为C.当时,函数有个零点D.当时,关于的方程有个实数解9.函数在上最大值与最小值之和是()A. B.C. D.10.已知角α的终边过点P(4,-3),则sinα+cosα的值是()A. B.C. D.11.函数的大致图像是()A. B.C. D.12.投壶是从先秦延续至清末的汉民族传统礼仪和宴饮游戏,在春秋战国时期较为盛行.如图为一幅唐朝的投壶图,假设甲、乙、丙是唐朝的三位投壶游戏参与者,且甲、乙、丙每次投壶时,投中与不投中是等可能的.若甲、乙、丙各投壶1次,则这3人中至多有1人投中的概率为()A. B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.函数且的图象恒过定点__________.14.已知不等式的解集是__________.15.已知甲运动员的投篮命中率为0.7,乙运动员的投篮命中率为0.8,若甲、乙各投篮一次,则恰有一人命中的概率是___________16.设向量不平行,向量与平行,则实数_________.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知向量=(3,4),=(-1,2)(1)求向量与夹角的余弦值;(2)若向量-与+2平行,求λ的值18.设函数.(1)若在区间上的最大值为,求的取值范围;(2)若在区间上有零点,求的最小值.19.如图,在直三棱柱ABC-A1B1C1中,D、E分别为AB、BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证:(1)直线A1C1∥平面B1DE;(2)平面A1B1BA⊥平面A1C1F.20.计算:21.已知定义域为D的函数fx,若存在实数a,使得∀x1∈D,都存在x2∈D满足(1)判断下列函数是否具有性质P0,说明理由;①fx=2x;(2)若函数fx的定义域为D,且具有性质P1,则“fx存在零点”是“2∈D”的___________条件,说明理由;(横线上填“(3)若存在唯一的实数a,使得函数fx=tx2+x+4,x∈0,222.已知函数,若同时满足以下条件:①在D上单调递减或单调递增;②存在区间,使在上的值域是,那么称为闭函数(1)求闭函数符合条件②的区间;(2)判断函数是不是闭函数?若是请找出区间;若不是请说明理由;(3)若是闭函数,求实数的取值范围
参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、B【解析】先由题意求出“弓”所在的弧长所对的圆心角,然后利用三角函数求弦长【详解】由题意得,“弓”所在的弧长为,所以其所对的圆心角的绝对值为,所以两手之间的距离故选:B2、C【解析】根据分段函数,结合指数,对数运算计算即可得答案.【详解】解:由于,所以.故选:C.【点睛】本题考查对数运算,指数运算,分段函数求函数值,考查运算能力,是基础题.3、B【解析】根据零点存在性定理,计算出区间端点的函数值即可判断;【详解】解:因为,在上是连续函数,且,即在上单调递增,,,,所以在上存在一个零点.故选:.【点睛】本题考查函数的零点的范围,注意运用零点存在定理,考查运算能力,属于基础题4、A【解析】利用分段函数,通过一次函数以及指数函数判断求解即可【详解】解:函数在上的值域为R,当函数的值域不可能是R,可得,解得:故选A【点睛】本题考查分段函数的应用,函数的最值的求法,属于基础题.5、A【解析】根据解析式可直接判断出单调性和奇偶性.【详解】对于A:为奇函数且在上单调递增,满足题意;对于B:为非奇非偶函数,不合题意;对于C:为非奇非偶函数,不合题意;对于D:在整个定义域内不具有单调性,不合题意.故选:A.6、C【解析】在正方体中,利用线面垂直的判定定理,证得平面,由此能求出结果【详解】如图所示,在正方体中,连结,则,,由线面垂直的判定定理得平面,所以,所以异面直线与所成的角的大小是故选C本题主要考查了直线与平面垂直判定与证明,以及异面直线所成角的求解,其中解答中牢记异面直线所成的求解方法和转化思想的应用是解答的关键,平时注意空间思维能力的培养,着重考查了推理与论证能力,属于基础题7、B【解析】分段函数中,根据对数函数分支y=log2x的值域在(1,+∞),而函数的值域为R,可知二次函数y=-x2+a的最大值大于等于1,即可求得a的范围【详解】x>2时,y=log2x>1∴要使函数的值域为R,则y=-x2+a在x≤2上的最大值a大于等于1即,a≥1故选:B【点睛】本题考查了对数函数的值域,由函数的值域及所得对数函数的值域,判断二次函数的的值域范围进而求参数范围8、C【解析】利用二次函数和指数函数的值域可判断A选项;利用二次函数和指数函数的单调性可判断B选项;利用函数的零点个数求出的取值范围,可判断C选项;解方程可判断D选项.【详解】选项A:当时,当时,,当时,,当时,,综上,函数的值域为,故A正确;选项B:当时,的单调递减区间为,当时,函数为单调递增函数,无单调减区间,所以函数的单调递减为,故B正确;选项C:当时,令,解得或(舍去),当时,要使有解,即在上有解,只需求出的值域即可,当时,,且函数在上单调递减,所以此时的范围为,故C错误;选项D:当时,,即,即,解得或,当,时,,则,即,解得,所以当时,关于的方程有个实数解,故D正确.故选:C.9、A【解析】直接利用的范围求得函数的最值,即可求解.【详解】∵,∴,∴,∴最大值与最小值之和为,故选:.10、A【解析】由三角函数的定义可求得sinα与cosα,从而可得sinα+cosα的值【详解】∵知角α的终边经过点P(4,-3),∴sinα,cosα,∴sinα+cosα故选:A11、D【解析】由题可得定义域为,排除A,C;又由在上单增,所以选D.12、C【解析】根据题意,列出所有可能,结合古典概率,即可求解.【详解】甲、乙、丙3人投中与否的所有情况为:(中,中,中),(中,中,不中),(中,不中,中),(中,不中,不中),(不中,中,中),(不中,中,不中),(不中,不中,中),(不中,不中,不中),共8种,其中至多有1人投中的有4种,故所求概率为故选:C.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】令真数为,求出的值,再代入函数解析式,即可得出函数的图象所过定点的坐标.【详解】令,得,且.函数的图象过定点.故答案为:.14、【解析】结合指数函数的单调性、绝对值不等式的解法求得不等式的解集.详解】,,,或,解得或,所以不等式不等式的解集是.故答案为:15、38##【解析】利用相互独立事件概率乘法公式及互斥事件概率计算公式即求.【详解】∵甲运动员的投篮命中率为0.7,乙运动员的投篮命中率为0.8,∴甲、乙各投篮一次,则恰有一人命中的概率是.故答案为:0.38.16、-2【解析】因为向量与平行,所以存在,使,所以,解得答案:三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1);(2)-2.【解析】(1)利用平面向量的数量积公式求出夹角的余弦值;(2)根据向量平行的坐标关系得到λ的方程,求值【详解】向量=(3,4),=(-1,2)(1)向量与夹角的余弦值;(2)向量-=(3+λ,4-2λ)与+2=(1,8)平行,则8(3+λ)=4-2λ,解得λ=-2【点睛】本题考查了平面向量数量积公式的运用以及向量平行的坐标关系,属于基础题18、(1);(2)【解析】⑴根据函数图象可得在区间上的最大值必是和其中较大者,求解即可得到的取值范围;⑵设方程的两根是,,由根与系数之间的关系转化为,对其化简原式大于或者等于,构造新函数,利用函数的最值来求解解析:(1)因为图象是开口向上的抛物线,所以在区间上的最大值必是和中较大者,而,所以只要,即,得.(2)设方程的两根是,,且,则,所以,当且仅当时取等号.设,则,由,得,因此,所以,此时,由知.所以当且时,取得最小值.点睛:本题考查了函数零点的判定定理,二次函数的性质以及解不等式,在求参量的最值时,利用根与系数之间的关系,转化为根的方程,运用函数的思想当取得对称轴时有最值,本题需要进行化归转化,难度较大19、证明过程详见解析【解析】(1)先证明DE∥A1C1,即证直线A1C1∥平面B1DE.(2)先证明DE⊥平面AA1B1B,再证明A1F⊥平面B1DE,即证平面AA1B1B⊥平面A1C1F.【详解】证明:(1)∵D,E分别为AB,BC的中点,∴DE为△ABC的中位线,∴DE∥AC,∵ABC-A1B1C1为棱柱,∴AC∥A1C1,∴DE∥A1C1,∵DE⊂平面B1DE,且A1C1⊄平面B1DE,∴A1C1∥平面B1DE;(2)在ABC-A1B1C1的直棱柱中,∴AA1⊥平面A1B1C1,∴AA1⊥A1C1,又∵A1C1⊥A1B1,且AA1∩A1B1=A1,AA1、A1B1⊂平面AA1B1B,∴A1C1⊥平面AA1B1B,∵DE∥A1C1,∴DE⊥平面AA1B1B,又∵A1F⊂平面AA1B1B,∴DE⊥A1F,又∵A1F⊥B1D,DE∩B1D=D,且DE、B1D⊂平面B1DE,∴A1F⊥平面B1DE,又∵A1F⊂平面A1C1F,∴平面AA1B1B⊥平面A1C1F【点睛】本题主要考查空间直线平面位置关系的证明,意在考查学生对这些知识的掌握水平和空间想象转化能力.20、(1)(2)0【解析】(1)根据对数的运算法则和幂的运算法则计算(2)根据特殊角三角函数值计算【详解】解:;【点睛】本题考查指数与对数的运算,考查三角函数的计算.属于基础题21、(1)①不具有性质P0;②具有性质(2)必要而不充分条件,理由见解析(3)t=【解析】(1)根据2x>0举例说明当x1>0时不存在x1+fx22=0;取x2=2-x1∈0,1可知fx=log2x,x∈0,1具有性质P0.(2)分别从fx存在零点,证明2∉0,1.和若2∈D,fx具有性质P(1)时,f【小问1详解】函数fx=2x对于a=0,x1=1,因为1+2所以函数fx=2函数fx=log2对于∀x1∈0,因为x1所以函数fx=log【小问2详解】必要而不充分理由如下:①若fx存在零点,令fx=3x-1因为∀x1∈0,1,取所以fx具有性质P(1②若2∈D,因为fx具有性质P取x1=2,则存在x2所以fx2=0,即f综上可知,“fx存在零点”是“2∈D”的必要而不充分条件【小问3详解】记函数fx=tx2+x+4,x∈因为存在唯一的实数a,使得函数fx=tx2+x+4,x∈0,2有性质①当t=0时,fx=x+4,由F=A得a=3.②当-14≤t,且t≠0时,由F=A得t=0,舍去.③当-12≤t<-14最小值为4,所以fx的值域F=由F=A得t=-18当t<-12时,fx=tx所以fx的值域F=由F=A得t=-2-34(舍去22、(1),;(2)见解析;(3)【解析】(1)由在R上单减,列出方程组,即可求的值;(2)由函数y=2x+lgx在(0,+∞)单调递增可知即,结合对数函数的单调性可判断(3)易知在[﹣2,+∞)上单调递增.设满足条件B的区间为[a,b],则方程组有解,方程至少有两个不同的解,即方程x2﹣(2k+1)x+k2﹣2=0有两个都不小于k的不根.结合二次方程的实根分布可求k的范围【详解】解:(1)∵在R上单减,所以区间[a,b]满足,解得a=﹣1,b=1(2)∵函数y=2x+lgx在(0,+∞)单调递增假设存在满足条件的区间[a,b],a<b,则,即∴lgx=﹣x在(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年2月山东领取济宁市份普通话水平测试等级证书模拟试卷完整参考答案详解
- 2025辽宁抚顺新抚钢有限责任公司招聘拟聘用人员考前自测高频考点模拟试题有完整答案详解
- 2025广西崇左市江州区住房和城乡建设局招聘编外工作人员2人模拟试卷及参考答案详解
- 2025年鹤壁黎阳中学招聘教师若干名考前自测高频考点模拟试题参考答案详解
- 2025年宣城市中心医院第一批次招聘22人模拟试卷及答案详解(考点梳理)
- 2025黑龙江哈尔滨工程大学发展计划处、学科专业建设办公室管理岗位招聘2人考前自测高频考点模拟试题含答案详解
- 2025年广西南宁市考试招聘中小学教师笔试有关事项模拟试卷完整参考答案详解
- 关于协会成立申请书范文
- 2025年4月15日广西梧州市龙投人力资源有限公司招聘2人模拟试卷及答案详解(夺冠系列)
- 2025河南郑州轨道工程职业学院招聘辅导员、教师共75名考前自测高频考点模拟试题完整参考答案详解
- 《江苏住宅物业管理服务标准》(DB32T538-2002)
- 装饰装修质量通病防治质量通病防治措施
- 物理课件电源和电流
- 《无人机载荷与行业应用》教学课件合集
- 《西安交通大学》课件
- 搜索引擎营销案例分析
- 分布式光伏发电并网调试方案
- 华信惠悦GGS全球职等系统
- 肝血管瘤患者的护理查房
- 吉塔行星模拟课程
- 上市公告书及招股说明书文件首旅酒店
评论
0/150
提交评论