2022-2023学年四川省绵阳市绵阳中学高一数学第一学期期末统考试题含解析_第1页
2022-2023学年四川省绵阳市绵阳中学高一数学第一学期期末统考试题含解析_第2页
2022-2023学年四川省绵阳市绵阳中学高一数学第一学期期末统考试题含解析_第3页
2022-2023学年四川省绵阳市绵阳中学高一数学第一学期期末统考试题含解析_第4页
2022-2023学年四川省绵阳市绵阳中学高一数学第一学期期末统考试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,且为第二象限角,则()A. B.C. D.2.已知,则a,b,c的大小关系为()A.a<b<c B.c<a<bC.a<c<b D.c<b<a3.已知函数在上是减函数,则实数的取值范围是()A. B.C. D.4.与角的终边相同的最小正角是()A. B.C. D.5.不等式的解集为()A. B.C. D.6.如图,有一个水平放置的透明无盖的正方体容器,容器高4cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为3cm,如果不计容器的厚度,则球的体积为A.B.C.D.7.已知全集,,则()A. B.C. D.8.若,均为锐角,,,则()A. B.C. D.9.设,,则的结果为()A. B.C. D.10.设,,则下面关系中正确的是()A B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若不等式的解集为,则不等式的解集为______.12.已知a=0.32,b=413,c=log132,则a13.化简求值(1)化简(2)已知:,求值14.设函数;若方程有且仅有1个实数根,则实数b的取值范围是__________15.已知曲线且过定点,若且,则的最小值为_____16.若是幂函数且在单调递增,则实数_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,射线、分别与轴正半轴成和角,过点作直线分别交、于、两点,当的中点恰好落在直线上时,求直线的方程18.已知函数f(x)=a-.(1)若2f(1)=f(2),求a的值;(2)判断f(x)在(-∞,0)上的单调性并用定义证明.19.近年来,我国大部分地区遭遇雾霾天气,给人们的健康、交通安全等带来了严重影响.经研究发现工业废气等污染物排放是雾霾形成和持续的重要因素,污染治理刻不容缓.为此,某工厂新购置并安装了先进的废气处理设备,使产生的废气经过过滤后排放,以降低对空气的污染.已知过滤过程中废气的污染物数量(单位:mg/L)与过滤时间(单位:h)间的关系为(,均为非零常数,e为自然对数的底数),其中为时的污染物数量.若经过5h过滤后还剩余90%的污染物.(1)求常数的值;(2)试计算污染物减少到40%至少需要多长时间.(精确到1h,参考数据:,,,,)20.如图所示,在四棱锥中,底面是正方形,侧棱底面,,是的中点,过点作交于点.(1)证明:平面;(2)证明:平面;(3)求三棱锥的体积.21.对于在区间上有意义的函数,若满足对任意的,,有恒成立,则称在上是“友好”的,否则就称在上是“不友好”的.现有函数.(1)当时,判断函数在上是否“友好”;(2)若关于x的方程的解集中有且只有一个元素,求实数a的取值范围

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】由已知利用诱导公式求得,进一步求得,再利用三角函数的基本关系式,即可求解【详解】由题意,得,又由为第二象限角,所以,所以故选:A.2、B【解析】结合指数函数、幂函数的单调性确定正确选项.【详解】在上递增,在上递增..故选:B3、C【解析】根据函数是上的减函数,则两段函数都是减函数,并且在分界点处需满足不等式,列不等式求实数的取值范围.【详解】由条件可知,函数在上是减函数,需满足,解得:.故选:C4、D【解析】写出与角终边相同的角的集合,即可得出结论.【详解】与角终边相同角的集合为,当时,取得最小正角为.故选:D.5、C【解析】将原不等式转化为从而可求出其解集【详解】原不等式可化为,即,所以解得故选:C6、A【解析】设球的半径为R,根据已知条件得出正方体上底面截球所得截面圆的半径为2cm,球心到截面圆圆心的距离为,再利用球的性质,求得球的半径,最后利用球体体积公式,即可得出答案【详解】设球的半径为R,设正方体上底面截球所得截面圆恰好为上底面正方形的内切圆,该圆的半径为,且该截面圆圆心到水面的距离为1cm,即球心到截面圆圆心的距离为,由勾股定理可得,解得,因此,球的体积为故选A【点睛】本题主要考查了球体的体积的计算问题,解决本题的关键在于利用几何体的结构特征和球的性质,求出球体的半径,着重考查了空间想象能力,以及推理与计算能力,属于基础题7、C【解析】根据补集的定义可得结果.【详解】因为全集,,所以根据补集的定义得,故选C.【点睛】若集合的元素已知,则求集合的交集、并集、补集时,可根据交集、并集、补集的定义求解8、B【解析】由结合平方关系可解.【详解】因为为锐角,,所以,又,均为锐角,所以,所以,所以.故选:B9、D【解析】根据交集的定义计算可得;【详解】解:因为,,所以故选:D10、D【解析】根据元素与集合关系,集合与集合的关系判断即可得解.【详解】解:因为,,所以,.故选:D.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由三个二次的关系求,根据分式不等式的解法求不等式的解集.【详解】∵不等式的解集为∴,是方程的两根,∴,∴可化为∴∴不等式的解集为,故答案为:.12、a>b>c【解析】根据指数函数与对数函数单调性直接判断即可.【详解】由已知得a=0.32<b=413所以a>b>c,故答案为:a>b>c.13、(1)(2)【解析】(1)利用诱导公式化简即可;(2)先进行弦化切,把代入即可求解.【小问1详解】.【小问2详解】因为,所以.所以.又,所以.14、【解析】根据分段函数的解析式作出函数图象,将方程有且仅有1个实数根转化为函数与直线有一个交点,然后数形结合即可求解.【详解】作出函数的图象,如图:结合图象可得:,故答案为:.15、【解析】由指数函数图象所过定点求出,利用“1”的代换凑配出定值后用基本不等式得出最小值.【详解】令,,则,∴定点为,,,当且仅当时等号成立,即时取得最小值.故答案为:.【点睛】本题考查指数函数的图象与性质,考查用基本不等式求最值.“1”的代换是解题关键.16、2【解析】由幂函数可得,解得或2,检验函数单调性求解即可.【详解】为幂函数,所以,解得或2.当时,,在不单调递增,舍去;当时,,在单调递增成立.故答案为.【点睛】本题主要考查了幂函数的定义及单调性,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、【解析】先求出、所在的直线方程,根据直线方程分别设A、B点坐标,进而求出的中点C的坐标,利用点C在直线上以及A、B、P三点共线列关系式解出B点坐标,从而求出直线AB的斜率,然后代入点斜式方程化简即可.【详解】解:由题意可得,,所以直线,设,,所以的中点由点在上,且、、三点共线得解得,所以又,所以所以,即直线的方程为【点睛】知识点点睛:(1)中点坐标公式:,则AB的中点为;(2)直线的点斜式方程:.18、(1)3(2)f(x)在(-∞,0)上是单调递增的,证明见解析【解析】(1)由已知列方程求解;(2)由复合函数单调性判断,根据单调性定义证明;【小问1详解】∵2f(1)=f(2),∴2(a-2)=a-1,∴a=3.【小问2详解】f(x)在(-∞,0)上是单调递增的,证明如下:设x1,x2∈(-∞,0),且x1<x2,则f(x1)-f(x2)=(a-)-(a-)=-=,∵x1,x2∈(-∞,0),∴x1x2>0.又x1<x2,∴x1-x2<0,∴f(x1)-f(x2)<0,即f(x1)<f(x2),∴f(x)=a-在(-∞,0)上是单调递增的.19、(1)(2)42h【解析】(1)根据题意,得到,求解,即可得出结果;(2)根据(1)的结果,得到,由题意得到,求解,即可得出结果.【详解】(1)由已知得,当时,;当时,.于是有,解得(或).(2)由(1)知,当时,有,解得.故污染物减少到40%至少需要42h.【点睛】本题主要考查函数模型的应用,熟记指数函数的性质即可,属于常考题型.20、(1)见解析;(2)见解析;(3).【解析】(1)连接交于点,连接,利用中位线定理得出∥,故平面;(2)由⊥底面,得,结合得平面,于是,结合得平面,故而,结合,即可得出平面;;(3)依题意,可得试题解析:(1)连接交于点,连接∵底面是正方形,∴点是的中点又为的中点,∴∥又平面,平面,∴∥平面.(2)∵⊥底面,平面,∴∵底面是正方形,∴.又,平面,平面,∴平面.又平面,∴∵,是的中点,∴.又平面,平面,,∴平面.而平面∴.又,且,又平面,平面,∴平面.(Ⅲ)∵是的中点,.【点睛】本题考查了线面平行的判定,线面垂直的判定与性质,棱锥的体积计算.正确运用定理是证明的关键.21、(1)当时,函数在,上是“友好”的(2)【解析】(1)当时,利用函数的单调性求出和,由即可求得结论;(2)化简原

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论