宝鸡市重点中学2022-2023学年数学高一上期末学业质量监测试题含解析_第1页
宝鸡市重点中学2022-2023学年数学高一上期末学业质量监测试题含解析_第2页
宝鸡市重点中学2022-2023学年数学高一上期末学业质量监测试题含解析_第3页
宝鸡市重点中学2022-2023学年数学高一上期末学业质量监测试题含解析_第4页
宝鸡市重点中学2022-2023学年数学高一上期末学业质量监测试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.函数的图像恒过定点,点在幂函数的图像上,则()A.16 B.8C.4 D.22.已知定义在R上的函数是奇函数,设,,,则有()A. B.C. D.3.()A. B.3C.2 D.4.设角的终边经过点,那么A. B.C. D.5.某同学用二分法求方程的近似解,该同学已经知道该方程的一个零点在之间,他用二分法操作了7次得到了方程的近似解,那么该近似解的精确度应该为A.0.1 B.0.01C.0.001 D.0.00016.已知命题,,则p的否定是()A., B.,C., D.,7.对于函数,,“”是“的图象既关于原点对称又关于轴对称”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件8.若是第三象限角,且,则是A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角9.圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面的半径为()A.7 B.6C.5 D.310.设P是△ABC所在平面内的一点,,则A. B.C. D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.已知圆:,为圆上一点,、、,则的最大值为______.12.幂函数为偶函数且在区间上单调递减,则________,________.13.在中,,,且在上,则线段的长为______14.不等式的解集是________.15.函数的单调递减区间为___________.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知,,(1)用,表示;(2)求17.已知,向量,.(1)当实数x为何值时,与垂直.(2)若,求在上的投影.18.计算下列各题:(1);(2).19.计算下列各式的值(1);(2)已知,求20.已知函数的部分图象如图所示(1)求函数的解析式:(2)将函数的图象上所有的点向右平移个单位,再将所得图象上每一个点的横坐标变为原来的2倍(纵坐标不变),得到函数的图象①当时,求函数的值域;②若方程在上有三个不相等的实数根,求的值21.已知:(1)求的值(2)若,求的值.

参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、A【解析】利用恒等式可得定点P,代入幂函数可得解析式,然后可得.【详解】当时,,所以函数的图像恒过定点记,则有,解得所以.故选:A2、D【解析】根据函数是奇函数的性质可求得m,再由函数的单调性和对数函数的性质可得选项.【详解】解:因为函数的定义在R上的奇函数,所以,即,解得,所以,所以在R上单调递减,又因为,,所以故选:D.3、D【解析】利用换底公式计算可得答案【详解】故选:D4、D【解析】由题意首先求得的值,然后利用诱导公式求解的值即可.【详解】由三角函数的定义可知:,则.本题选择D选项.【点睛】本题主要考查由点的坐标确定三角函数值的方法,诱导公式及其应用等知识,意在考查学生的转化能力和计算求解能力.5、B【解析】令,则用计算器作出的对应值表:由表格数据知,用二分法操作次可将作为得到方程的近似解,,,近似解的精确度应该为0.01,故选B.6、D【解析】由否定的定义写出即可.【详解】p的否定是,.故选:D7、C【解析】由函数奇偶性的定义求出的解析式,可得出结论.【详解】若函数的定义域为,的图象既关于原点对称又关于轴对称,则,可得,因此,“”是“的图象既关于原点对称又关于轴对称”的充要条件故选:C.8、D【解析】根据是第三象限角,写出角的集合,进一步得到的集合,再根据得到答案【详解】是第三象限角,,则,即是第二象限或者第四象限角,,是第四象限角故选:D9、A【解析】设圆台上底面半径为,由圆台侧面积公式列出方程,求解即可得解.【详解】设圆台上底面半径为,由题意下底面半径为,母线长,所以,解得.故选:A.【点睛】本题考查了圆台侧面积公式的应用,属于基础题.10、B【解析】由向量的加减法运算化简即可得解.【详解】,移项得【点睛】本题主要考查了向量的加减法运算,属于基础题.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、53【解析】设,则,从而求出,再根据的取值范围,求出式子的最大值.【详解】设,因为为圆上一点,则,且,则(当且仅当时取得最大值),故答案为:53.【点睛】本题属于圆与距离的应用问题,主要考查代数式的最值求法.解决此类问题一是要将题设条件转化为相应代数式;二是要确定代数式中变量的取值范围.12、(1).或3(2).4【解析】根据题意可得:【详解】区间上单调递减,,或3,当或3时,都有,,.故答案为:或3;4.13、1【解析】∵,∴,∴,∵且在上,∴线段为的角平分线,∴,以A为原点,如图建立平面直角坐标系,则,D∴故答案为114、【解析】由题意,,根据一元二次不等式的解法即可求出结果.【详解】由题意,或,故不等式的解集为.故答案为:.【点睛】本题主要考查了一元二次不等式的解法,属于基础题.15、【解析】利用对数型复合函数性质求解即可.【详解】由题知:,解得或.令,则为减函数.所以,为减函数,为增函数,,为增函数,为减函数.所以函数的单调递减区间为.故答案为:三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)(2)【解析】先把指数式化为对数式求出的值,再利用对数的运算性质进行求解【小问1详解】解:,,,【小问2详解】解:,,,17、(1)3;(2).【解析】(1)令,列方程解出x.(2)运用向量的数量积的定义可得,再由在上的投影为,计算即可得到所求值.【详解】(1)∵,向量,.∵与垂直,∴,可得,∴解得,或(舍去).(2)若,则,,可得,可得在上的投影为.【点睛】该题考查的是有关向量的问题,涉及到的知识点有向量垂直的条件,向量数量积坐标公式,向量在另一个向量方向上的投影的求解,属于简单题目.18、(1);(2).【解析】(1)利用指对幂运算性质化简求值;(2)利用对数运算性质化简求值.【小问1详解】原式.【小问2详解】原式.19、(1)(2)1【解析】(1)根据对数和指数幂的运算性质计算即可得出答案.(2)利用诱导公式化简目标式,然后分子分母同时除以,代入即可得出答案.【小问1详解】原式=;【小问2详解】原式=.20、(1);(2)①;②.【解析】(1)由图象得A、B、,再代入点,求解可得函数的解析式;(2)①由已知得,由求得,继而求得函数的值域;②令,,做出函数的图象,设有三个不同的实数根,有,,继而得,由此可得答案.【小问1详解】解:由图示得:,又,所以,所以,所以,又因为过点,所以,即,所以,解得,又,所以,所以;【小问2详解】解①:由已知得,当时,,所以,所以,所以,所以函数的值域为;②当时,,令,则,令,则函数的图象

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论