广西梧州市岑溪市2022年数学高一上期末达标检测试题含解析_第1页
广西梧州市岑溪市2022年数学高一上期末达标检测试题含解析_第2页
广西梧州市岑溪市2022年数学高一上期末达标检测试题含解析_第3页
广西梧州市岑溪市2022年数学高一上期末达标检测试题含解析_第4页
广西梧州市岑溪市2022年数学高一上期末达标检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

15/152022-2023学年高一上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.集合的真子集的个数是()A. B.C. D.2.()A. B.C. D.13.若,,则的值为A. B.C. D.4.函数A.是奇函数且在区间上单调递增B.是奇函数且在区间上单调递减C.是偶函数且在区间上单调递增D.是偶函数且在区间上单调递减5.已知不等式的解集为,则不等式的解集是()A. B.C.或 D.或6.已知a,b,c∈R,那么下列命题中正确的是()A.若a>b,则ac2>bc2C.若a>b,ab<0,则1a>1b D.若a7.将函数的图象向左平移个单位长度,所得图象的函数解析式为A. B.C. D.8.下列函数中,最小正周期为的奇函数是()A. B.C. D.9.下列函数在定义域内既是奇函数,又是减函数的是()A. B.C. D.10.如果,,那么()A. B.C. D.11.设是两个不同的平面,是一条直线,以下命题正确的是A.若,则 B.若,则C.若,则 D.若,则12.设集合,则是A. B.C. D.有限集二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.当时x≠0时的最小值是____.14.已知函数,若存在,使得,则的取值范围为_____________.15.若函数在区间上单调递增,则实数的取值范围是__________.16.已知函数y=sin(x+)(>0,-<)的图象如图所示,则=________________.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.要建造一段5000m的高速公路,工程队需要把600人分成两组,一组完成一段2000m的软土地带公路的建造任务,同时另一组完成剩下的3000m的硬土地带公路的建造任务.据测算,软、硬土地每米公路的工程量分别是50人/天和30人/天,设在软土地带工作的人数x人,在软土、硬土地带筑路的时间分别记为,(1)求,;(2)求全队的筑路工期;(3)如何安排两组人数,才能使全队筑路工期最短?18.已知函数,且.(1)求的定义域;(2)判断的奇偶性并予以证明;(3)当时,求使的的解集.19.已知函数,其中,且.(1)求的值及的最小正周期;(2)当时,求函数的值域.20.函数的一段图象如图所示.(1)求函数的解析式;(2)将函数图象向右平移个单位,得函数的图象,求在的单调增区间21.过圆内一点P(3,1)作弦AB,当|AB|最短时,求弦长|AB|.22.(1)求函数的解析式;(2)试判断函数在区间上的单调性,并用函数单调性定义证明;(3)当时,函数恒成立,求实数m的取值范围

参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、B【解析】确定集合的元素个数,利用集合真子集个数公式可求得结果.【详解】集合的元素个数为,故集合的真子集个数为.故选:B.2、B【解析】先利用诱导公式把化成,就把原式化成了两角和余弦公式,解之即可.【详解】由可知,故选:B3、A【解析】由两角差的正切公式展开计算可得【详解】解:,,则,故选A【点睛】本题考查两角差的正切公式:,对应还应该掌握两角和的正切公式,及正弦余弦公式.本题是基础4、A【解析】由可知是奇函数,排除,,且,由可知错误,故选5、A【解析】由不等式的解集为,可得的根为,由韦达定理可得的值,代入不等式解出其解集即可.【详解】的解集为,则的根为,即,,解得,则不等式可化为,即为,解得或,故选:A.6、C【解析】根据不等式的性质或通过举反例,对四个选项进行分析【详解】A.若a>b,当c=0时,ac2=bB.若ac>bc,当c<0时,则C.因为ab<0,将a>b两边同除以ab,则1a>1D.若a2>b2且ab>0,当a<0b<0时,则a<b故选:C7、A【解析】依题意将函数的图象向左平移个单位长度得到:故选8、C【解析】根据题意,分别判断四个选项中的函数的最小正周期和奇偶性即可,其中A、C选项中的函数先要用诱导公式化简.【详解】A选项:,其定义域为,,为偶函数,其最小正周期为,故A错误.B选项:,其最小正周期为,函数定义域为,,函数不是奇函数,故B错误.C选项:其定义域为,,函数为奇函数,其最小正周期为,故C正确.D选项:函数定义域为,,函数为偶函数,其最小正周期,故D错误.故选:C.9、D【解析】利用常见函数的奇偶性和单调性逐一判断即可.【详解】对于A,,是偶函数,不满足题意对于B,是奇函数,但不是减函数,不满足题意对于C,,是奇函数,因为是增函数,是减函数,所以是增函数,不满足题意对于D,是奇函数且是减函数,满足题意故选:D10、D【解析】根据不等式的性质,对四个选项进行判断,从而得到答案.【详解】因为,所以,故A错误;因为,当时,得,故B错误;因为,所以,故C错误;因为,所以,故D正确.故选:D.【点睛】本题考查不等式的性质,属于简单题.11、C【解析】对于A、B、D均可能出现,而对于C是正确的12、C【解析】根据二次函数和指数函数的图象和性质,分别求出两集合中函数的值域,求出两集合的交集即可【详解】由集合S中的函数y=3x>0,得到集合S={y|y>0};由集合T中的函数y=x2﹣1≥﹣1,得到集合T={y|y≥﹣1},则S∩T=S故选C【点睛】本题属于求函数值域,考查了交集的求法,属于基础题二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】直接利用基本不等式的应用求出结果【详解】解:由于,所以(当且仅当时,等号成立)故最小值为故答案为:14、【解析】根据条件作出函数图象求解出的范围,利用和换元法将变形为二次函数的形式,从而求解出其取值范围.【详解】由解析式得大致图象如下图所示:由图可知:当时且,则令,解得:,,又,,,令,则,,即.故答案为:【点睛】思路点睛:根据分段函数函数值相等关系可将所求式子统一为一个变量表示的函数的形式,进而根据函数值域的求解方法求得结果;易错点是忽略变量的取值范围,造成值域求解错误.15、【解析】按a值对函数进行分类讨论,再结合函数的性质求解作答.【详解】当时,函数在R上单调递增,即在上递增,则,当时,函数是二次函数,又在上单调递增,由二次函数性质知,,则有,解得,所以实数的取值范围是.故答案为:16、【解析】由图可知,三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1),,,(2),且(3)安排316人到软土地带工作,284人到硬土地带工作时,可以使全队筑路工期最短【解析】(1)由题意分别计算在软土、硬土地带筑路的时间即可;(2)由得到零点,即可得到分段函数;(3)利用函数的单调性即可得到结果.【小问1详解】在软土地带筑路时间为:,在硬土地带筑路时间为,,【小问2详解】全队的筑路工期为由于,即,得从而,即,且.【小问3详解】函数区间上递减,在区间上递增,所以是函数的最小值点但不是整数,于是计算和,其中较小者即为所求于是安排316人到软土地带工作,284人到硬土地带工作时,可以使全队筑路工期最短18、(1);(2)奇函数,证明见解析;(3)【解析】(1)本题可通过求解得出结果;(2)本题可根据得出结果;(3)本题首先可判断出当时在定义域内是增函数,然后通过得出,通过计算即可得出结果.【详解】(1)因为,所以,解得,的定义域为.(2)的定义域为,,故是奇函数.(3)因为当时,是增函数,是减函数,所以当时在定义域内是增函数,即,,,,,解得,故使的的解集为.19、(1),(2)【解析】(1)利用两角和正弦公式和辅助角公式化简,结合条件可求函数解析式,由周期公式求周期;(2)利用不等式的性质和正弦函数的性质求函数的值域.【小问1详解】因为,故,解得因为,故.则的最小正周期为.【小问2详解】因为,所以,则,所以,故函数的值域为.20、(1);(2)【解析】(1)由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式;(2)根据函数y=Asin(ωx+φ)的图象变换规律,求得函数y=f2(x)的解析式,由,得到函数的单调增区间.【详解】(1)如图,由题意得,的最大值为2,又,∴,即∴.因为的图像过最高点,则即(2).依题意得:∴由解得:,则的单调增区间为.【点睛】本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,函数y=Asin(ωx+φ)的图象变换规律,正弦函数的单调性,属于中档题21、.【解析】考虑直线AB的斜率不存在时,求出A,B坐标,得到,当直线AB的斜率存在时,圆的圆心(4,2),半径r=3,圆心(4,2)到直线AB的距离为:,利用勾股定理基本不不等式即可求出圆的最短的弦长【详解】(1)当直线AB的斜率不存在时,,所以(2)当直线AB的斜率存在时,圆心(4,2)到直线AB的距离为:,即,当时取得最小值7,弦长的最小值为.综上弦长的最小值为.【点睛】本题考查圆的最短

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论