牛栏山一中2022-2023学年数学高一上期末复习检测模拟试题含解析_第1页
牛栏山一中2022-2023学年数学高一上期末复习检测模拟试题含解析_第2页
牛栏山一中2022-2023学年数学高一上期末复习检测模拟试题含解析_第3页
牛栏山一中2022-2023学年数学高一上期末复习检测模拟试题含解析_第4页
牛栏山一中2022-2023学年数学高一上期末复习检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

15/152022-2023学年高一上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12小题,共60分)1.学校操场上的铅球投郑落球区是一个半径为米的扇形,并且沿着扇形的弧是长度为约米的防护栏,则扇形弧所对的圆心角的大小约为()A. B.C. D.2.下列每组函数是同一函数的是()A. B.C. D.3.下列区间中,函数f(x)=|ln(2-x)|在其上为增函数的是()A. B.C. D.4.若直线平面,直线平面,则直线a与直线b的位置关系为()A.异面 B.相交C.平行 D.平行或异面5.下列说法中,错误的是()A.若,,则 B.若,则C.若,,则 D.若,,则6.已知函数(,且)在上单调递减,且关于x的方程恰有两个不相等的实数解,则的取值范围是A. B.[,]C.[,]{} D.[,){}7.已知函数,若函数有四个零点,则的取值范围是A. B.C. D.8.下列函数中,在其定义域内既是增函数又是奇函数的是()A. B.C. D.9.若,,,则()A. B.C. D.10.若,则的最小值为()A.4 B.3C.2 D.111.已知集合A={x|-1≤x≤2},B={0,1,2,3},则A∩B=()A.{0,1} B.{-1,0,1}C.{0,1,2} D.{-1,0,1,2}12.已知函数,对于任意,且,均存在唯一实数,使得,且,若关于的方程有4个不相等的实数根,则的取值范围是A. B.C. D.二、填空题(本大题共4小题,共20分)13.已知函数,若有解,则m的取值范围是______14.已知函数的图像恒过定点A,若点A在一次函数的图像上,其中,则的最小值是__________15.函数在上是x的减函数,则实数a的取值范围是______16.已知,则________.三、解答题(本大题共6小题,共70分)17.化简或求下列各式的值(1);(2)(lg5)2+lg5•lg20+18.已知与都是锐角,且,(1)求的值;(2)求证:19.食品安全问题越来越引起人们的重视,农药、化肥的滥用给人民群众的健康带来了一定的危害.为了给消费者带来放心的蔬菜,某农村合作社每年投入资金万元,搭建甲、乙两个无公害蔬菜大棚,每个大棚至少要投入资金万元,其中甲大棚种西红柿,乙大棚种黄瓜.根据以往的种菜经验,发现种西红柿的年收入、种黄瓜的年收入与各自的资金投入(单位:万元)满足,.设甲大棚的资金投入为(单位:万元),每年两个大棚的总收入为(单位:万元)(1)求的值;(2)试问如何安排甲、乙两个大棚的资金投入,才能使总收入最大20.已知函数(为常数)是定义在上的奇函数.(1)求函数的解析式;(2)判断函数的单调性,并用定义证明;(3)若函数满足,求实数的取值范围.21.已知圆的圆心坐标为,直线被圆截得的弦长为.(1)求圆的方程;(2)求经过点且与圆C相切的直线方程.22.设函数,(1)根据定义证明在区间上单调递增;(2)判断并证明的奇偶性;(3)解关于x的不等式.

参考答案一、选择题(本大题共12小题,共60分)1、A【解析】直接由弧长半径圆心角的公式求解即可.【详解】根据条件得:扇形半径为10,弧长为6,所以圆心角为:.故选:A.2、C【解析】依次判断每组函数的定义域和对应法则是否相同,可得选项.【详解】A.的定义域为,的定义城为,定义域不同,故A错误;B.的定义域为,的定义域为,定义域不同,故B错误;C.与的定义域都为,,对应法则相同,故C正确;D.的定义域为,的定义域为,定义域不同,故D错误;故选:C【点睛】易错点睛:本题考查判断两个函数是否是同一函数,判断时,注意考虑函数的定义域和对应法则是否完全相同,属于基础题.3、D【解析】函数定义域为当时,是减函数;当时,是增函数;故选D4、C【解析】利用线面垂直的性质定理进行判断.【详解】由于垂直于同一平面的两直线平行,故当直线平面,直线平面时,直线与直线平行.故选:C.5、A【解析】逐一检验,对A,取,判断可知;对B,,可知;对C,利用作差即可判断;对D根据不等式同向可加性可知结果.【详解】对A,取,所以,故错误;对B,由,,所以,故正确;对C,,由,,所以,所以,故正确;对D,由,所以,又,所以故选:A6、C【解析】由在上单调递减可知,由方程恰好有两个不相等的实数解,可知,,又时,抛物线与直线相切,也符合题意,∴实数的取值范围是,故选C.【考点】函数性质综合应用【名师点睛】已知函数有零点求参数取值范围常用的方法和思路:(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解7、B【解析】不妨设,的图像如图所示,则,,其中,故,也就是,则,因,故.故选:B.【点睛】函数有四个不同零点可以转化为的图像与动直线有四个不同的交点,注意函数的图像有局部对称性,而且还是倒数关系.8、D【解析】在定义域每个区间上为减函数,排除.是非奇非偶函数,排除.故选.9、A【解析】先变形,然后利用指数函数的性质比较大小即可【详解】,因为在上为减函数,且,所以,所以,故选:A10、D【解析】利用“乘1法”即得.【详解】因为,所以,∴,当且仅当时,即时取等号,所以的最小值为1.故选:D.11、C【解析】利用交集定义直接求解【详解】∵集合A={x|-1≤x≤2},B={0,1,2,3},∴A∩B={0,1,2}故选:C12、A【解析】解:由题意可知f(x)在[0,+∞)上单调递增,值域为[m,+∞),∵对于任意s∈R,且s≠0,均存在唯一实数t,使得f(s)=f(t),且s≠t,∴f(x)在(﹣∞,0)上是减函数,值域为(m,+∞),∴a<0,且﹣b+1=m,即b=1﹣m∵|f(x)|=f()有4个不相等的实数根,∴0<f()<﹣m,又m<﹣1,∴0m,即0<(1)m<﹣m,∴﹣4<a<﹣2,∴则a的取值范围是(﹣4,﹣2),故选A点睛:本题中涉及根据函数零点求参数取值,是高考经常涉及的重点问题,(1)利用零点存在的判定定理构建不等式求解;(2)分离参数后转化为函数的值域(最值)问题求解,如果涉及由几个零点时,还需考虑函数的图象与参数的交点个数;(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.二、填空题(本大题共4小题,共20分)13、【解析】利用函数的值域,转化方程的实数解,列出不等式求解即可.【详解】函数,若有解,就是关于的方程在上有解;可得:或,解得:或可得.故答案为.【点睛】本题考查函数与方程的应用,考查转化思想有解计算能力.14、8【解析】可得定点,代入一次函数得,利用展开由基本不等式求解.【详解】由可得当时,,故,点A在一次函数的图像上,,即,,,当且仅当,即时等号成立,故的最小值是8.故答案为:8.【点睛】本题考查基本不等式的应用,解题的关键是得出定点A,代入一次函数得出,利用“1”的妙用求解.15、【解析】首先保证真数位置在上恒成立,得到的范围要求,再分和进行讨论,由复合函数的单调性,得到关于的不等式,得到答案.【详解】函数,所以真数位置上的在上恒成立,由一次函数保号性可知,,当时,外层函数为减函数,要使为减函数,则为增函数,所以,即,所以,当时,外层函数为增函数,要使为减函数,则为减函数,所以,即,所以,综上可得的范围为.故答案为.【点睛】本题考查由复合函数的单调性,求参数的范围,属于中档题.16、【解析】将未知角化为已知角,结合三角恒等变换公式化简即可.【详解】解:因为,所以.故答案为:.【点睛】三角公式求值中变角的解题思路(1)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式;(2)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,再应用诱导公式把“所求角”变成“已知角”.三、解答题(本大题共6小题,共70分)17、(1);(2)2【解析】(1)进行分数指数幂的运算即可;(2)进行对数的运算即可【详解】(1)原式=;(2)原式=lg5(lg5+lg20)+lg4=2(lg5+lg2)=2【点睛】本题主要考查分数指数幂和对数的运算,考查对数的换底公式.意在考查学生对这些知识的理解掌握水平和计算能力.18、(1)(2)见解析【解析】(1)先确定的取值范围,再利用同角三角函数的平方关系,求得和的值,然后根据,并结合两角和的正弦公式,得解;(2)由,,结合两角和差的正弦公式,分别求出和的值,即可得证【小问1详解】解:因为与都是锐角,所以,,又,,所以,,所以,,所以;【小问2详解】证明:因为,所以①,因为,所以②,①②得,,①②得,,故19、(1);(2)当甲大棚投入资金为128万元,乙大棚投入资金为72万元时,总收益最大.【解析】(1)根据题意,可分别求得甲、乙两个大棚的资金投入值,代入解析式即可求得总收益.(2)表示出总收益的表达式,并求得自变量取值范围,利用换元法转化为二次函数形式,即可确定最大值.【详解】(1)当甲大棚的资金投入为50万元时,乙大棚资金投入为150万元,则由足,可得总收益为万元;(2)根据题意,可知总收益为满足,解得,令,所以,因为,所以当即时总收益最大,最大收益为万元,所以当甲大棚投入资金为128万元,乙大棚投入资金为72万元时,总收益最大,最大收益为282万元.【点睛】本题考查了函数在实际问题中的应用,分段函数模型的应用,二次函数型求最值的应用,属于基础题.20、(1)(2)在上单调递减,证明见解析(3)【解析】(1)依题意可得,即可得到方程,解得即可;(2)首先判断函数的单调性,再根据定义法证明,按照设元、作差、变形、判断符号、下结论的步骤完成即可;(3)根据函数的奇偶性与单调性将函数不等式转化为自变量的不等式,再解得即可;【小问1详解】解:因为是定义在上的奇函数,所以,即,即,所以,即;解得,所以【小问2详解】解:函数是上的减函数证明:在上任取,,设,因为,所以,则,所以即所以在上单调递减【小问3详解】解:因为是定义在上奇函数所以可化为又在上单调递减,所以解得21、(1);(2)和.【解析】(1)根据圆心坐标设圆的标准方程,结合点到直线的距离公式求出圆的半径即可.(2)当切线斜率不存在时满足题意;当切线斜率存在时,设切线方程,结合点到直线的距离公式和圆心到直线的距离为半径,计算求出直线斜率即可.【详解】(1)设圆的标准方程为:圆心到直线的距离:,则圆的标准方程:(2)①当切线斜率不存在时,设切线:,此时满足直线与圆相切.②当切线斜率存在时,设切线:,即则圆心到直线的距离:.解得:,即则切线方程为:综上,切线方程为:和22、(1)证明见解析(2)奇函数,证明见解析(3)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论