


版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023高考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设全集,集合,,则()A. B. C. D.2.近年来,随着网络的普及和智能手机的更新换代,各种方便的相继出世,其功能也是五花八门.某大学为了调查在校大学生使用的主要用途,随机抽取了名大学生进行调查,各主要用途与对应人数的结果统计如图所示,现有如下说法:①可以估计使用主要听音乐的大学生人数多于主要看社区、新闻、资讯的大学生人数;②可以估计不足的大学生使用主要玩游戏;③可以估计使用主要找人聊天的大学生超过总数的.其中正确的个数为()A. B. C. D.3.已知数列是公比为的正项等比数列,若、满足,则的最小值为()A. B. C. D.4.已知平行于轴的直线分别交曲线于两点,则的最小值为()A. B. C. D.5.斜率为1的直线l与椭圆相交于A、B两点,则的最大值为A.2 B. C. D.6.设,均为非零的平面向量,则“存在负数,使得”是“”的A.充要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件7.已知角的终边经过点,则A. B.C. D.8.已知在平面直角坐标系中,圆:与圆:交于,两点,若,则实数的值为()A.1 B.2 C.-1 D.-29.《周易》是我国古代典籍,用“卦”描述了天地世间万象变化.如图是一个八卦图,包含乾、坤、震、巽、坎、离、艮、兑八卦(每一卦由三个爻组成,其中“”表示一个阳爻,“”表示一个阴爻)若从八卦中任取两卦,这两卦的六个爻中恰有两个阳爻的概率为()A. B. C. D.10.复数的实部与虚部相等,其中为虚部单位,则实数()A.3 B. C. D.11.已知,,若,则实数的值是()A.-1 B.7 C.1 D.1或712.如图是国家统计局公布的年入境游客(单位:万人次)的变化情况,则下列结论错误的是()A.2014年我国入境游客万人次最少B.后4年我国入境游客万人次呈逐渐增加趋势C.这6年我国入境游客万人次的中位数大于13340万人次D.前3年我国入境游客万人次数据的方差小于后3年我国入境游客万人次数据的方差二、填空题:本题共4小题,每小题5分,共20分。13.已知边长为的菱形中,,现沿对角线折起,使得二面角为,此时点,,,在同一个球面上,则该球的表面积为________.14.一个房间的地面是由12个正方形所组成,如图所示.今想用长方形瓷砖铺满地面,已知每一块长方形瓷砖可以覆盖两块相邻的正方形,即或,则用6块瓷砖铺满房间地面的方法有_______种.15.角α的顶点在坐标原点,始边与x轴的非负半轴重合,终边经过点P(1,2),则sin(π﹣α)的值是_____.16.(5分)已知,且,则的值是____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设数列的前列项和为,已知.(1)求数列的通项公式;(2)求证:.18.(12分)函数(1)证明:;(2)若存在,且,使得成立,求取值范围.19.(12分)追求人类与生存环境的和谐发展是中国特色社会主义生态文明的价值取向.为了改善空气质量,某城市环保局随机抽取了一年内100天的空气质量指数(AQI)的检测数据,结果统计如表:AQI空气质量优良轻度污染中度污染重度污染重度污染天数61418272510(1)从空气质量指数属于[0,50],(50,100]的天数中任取3天,求这3天中空气质量至少有2天为优的概率;(2)已知某企业每天因空气质量造成的经济损失y(单位:元)与空气质量指数x的关系式为,假设该企业所在地7月与8月每天空气质量为优、良、轻度污染、中度污染、重度污染、严重污染的概率分别为.9月每天的空气质量对应的概率以表中100天的空气质量的频率代替.(i)记该企业9月每天因空气质量造成的经济损失为X元,求X的分布列;(ii)试问该企业7月、8月、9月这三个月因空气质量造成的经济损失总额的数学期望是否会超过2.88万元?说明你的理由.20.(12分)在中,、、的对应边分别为、、,已知,,.(1)求;(2)设为中点,求的长.21.(12分)已知函数(Ⅰ)若,求曲线在点处的切线方程;(Ⅱ)若在上恒成立,求实数的取值范围;(Ⅲ)若数列的前项和,,求证:数列的前项和.22.(10分)已知直线:与抛物线切于点,直线:过定点Q,且抛物线上的点到点Q的距离与其到准线距离之和的最小值为.(1)求抛物线的方程及点的坐标;(2)设直线与抛物线交于(异于点P)两个不同的点A、B,直线PA,PB的斜率分别为,那么是否存在实数,使得?若存在,求出的值;若不存在,请说明理由.
2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.B【答案解析】
可解出集合,然后进行补集、交集的运算即可.【题目详解】,,则,因此,.故选:B.【答案点睛】本题考查补集和交集的运算,涉及一元二次不等式的求解,考查运算求解能力,属于基础题.2.C【答案解析】
根据利用主要听音乐的人数和使用主要看社区、新闻、资讯的人数作大小比较,可判断①的正误;计算使用主要玩游戏的大学生所占的比例,可判断②的正误;计算使用主要找人聊天的大学生所占的比例,可判断③的正误.综合得出结论.【题目详解】使用主要听音乐的人数为,使用主要看社区、新闻、资讯的人数为,所以①正确;使用主要玩游戏的人数为,而调查的总人数为,,故超过的大学生使用主要玩游戏,所以②错误;使用主要找人聊天的大学生人数为,因为,所以③正确.故选:C.【答案点睛】本题考查统计中相关命题真假的判断,计算出相应的频数与频率是关键,考查数据处理能力,属于基础题.3.B【答案解析】
利用等比数列的通项公式和指数幂的运算法则、指数函数的单调性求得再根据此范围求的最小值.【题目详解】数列是公比为的正项等比数列,、满足,由等比数列的通项公式得,即,,可得,且、都是正整数,求的最小值即求在,且、都是正整数范围下求最小值和的最小值,讨论、取值.当且时,的最小值为.故选:B.【答案点睛】本题考查等比数列的通项公式和指数幂的运算法则、指数函数性质等基础知识,考查数学运算求解能力和分类讨论思想,是中等题.4.A【答案解析】
设直线为,用表示出,,求出,令,利用导数求出单调区间和极小值、最小值,即可求出的最小值.【题目详解】解:设直线为,则,,而满足,那么设,则,函数在上单调递减,在上单调递增,所以故选:.【答案点睛】本题考查导数知识的运用:求单调区间和极值、最值,考查化简整理的运算能力,正确求导确定函数的最小值是关键,属于中档题.5.C【答案解析】
设出直线的方程,代入椭圆方程中消去y,根据判别式大于0求得t的范围,进而利用弦长公式求得|AB|的表达式,利用t的范围求得|AB|的最大值.【题目详解】解:设直线l的方程为y=x+t,代入y2=1,消去y得x2+2tx+t2﹣1=0,由题意得△=(2t)2﹣1(t2﹣1)>0,即t2<1.弦长|AB|=4.故选:C.【答案点睛】本题主要考查了椭圆的应用,直线与椭圆的关系.常需要把直线与椭圆方程联立,利用韦达定理,判别式找到解决问题的突破口.6.B【答案解析】
根据充分条件、必要条件的定义进行分析、判断后可得结论.【题目详解】因为,均为非零的平面向量,存在负数,使得,所以向量,共线且方向相反,所以,即充分性成立;反之,当向量,的夹角为钝角时,满足,但此时,不共线且反向,所以必要性不成立.所以“存在负数,使得”是“”的充分不必要条件.故选B.【答案点睛】判断p是q的什么条件,需要从两方面分析:一是由条件p能否推得条件q;二是由条件q能否推得条件p,定义法是判断充分条件、必要条件的基本的方法,解题时注意选择恰当的方法判断命题是否正确.7.D【答案解析】因为角的终边经过点,所以,则,即.故选D.8.D【答案解析】
由可得,O在AB的中垂线上,结合圆的性质可知O在两个圆心的连线上,从而可求.【题目详解】因为,所以O在AB的中垂线上,即O在两个圆心的连线上,,,三点共线,所以,得,故选D.【答案点睛】本题主要考查圆的性质应用,几何性质的转化是求解的捷径.9.C【答案解析】
分类讨论,仅有一个阳爻的有坎、艮、震三卦,从中取两卦;从仅有两个阳爻的有巽、离、兑三卦中取一个,再取没有阳爻的坤卦,计算满足条件的种数,利用古典概型即得解.【题目详解】由图可知,仅有一个阳爻的有坎、艮、震三卦,从中取两卦满足条件,其种数是;仅有两个阳爻的有巽、离、兑三卦,没有阳爻的是坤卦,此时取两卦满足条件的种数是,于是所求的概率.故选:C【答案点睛】本题考查了古典概型的应用,考查了学生综合分析,分类讨论,数学运算的能力,属于基础题.10.B【答案解析】
利用乘法运算化简复数即可得到答案.【题目详解】由已知,,所以,解得.故选:B【答案点睛】本题考查复数的概念及复数的乘法运算,考查学生的基本计算能力,是一道容易题.11.C【答案解析】
根据平面向量数量积的坐标运算,化简即可求得的值.【题目详解】由平面向量数量积的坐标运算,代入化简可得.∴解得.故选:C.【答案点睛】本题考查了平面向量数量积的坐标运算,属于基础题.12.D【答案解析】
ABD可通过统计图直接分析得出结论,C可通过计算中位数判断选项是否正确.【题目详解】A.由统计图可知:2014年入境游客万人次最少,故正确;B.由统计图可知:后4年我国入境游客万人次呈逐渐增加趋势,故正确;C.入境游客万人次的中位数应为与的平均数,大于万次,故正确;D.由统计图可知:前年的入境游客万人次相比于后年的波动更大,所以对应的方差更大,故错误.故选:D.【答案点睛】本题考查统计图表信息的读取以及对中位数和方差的理解,难度较易.处理问题的关键是能通过所给统计图,分析出对应的信息,对学生分析问题的能力有一定要求.二、填空题:本题共4小题,每小题5分,共20分。13.【答案解析】
分别取,的中点,,连接,由图形的对称性可知球心必在的延长线上,设球心为,半径为,,由勾股定理可得、,再根据球的面积公式计算可得;【题目详解】如图,分别取,的中点,,连接,则易得,,,,由图形的对称性可知球心必在的延长线上,设球心为,半径为,,可得,解得,.故该球的表面积为.故答案为:【答案点睛】本题考查多面体的外接球的计算,属于中档题.14.11【答案解析】
将图形中左侧的两列瓷砖的形状先确定,再由此进行分类,在每一类里面又分按两种形状的瓷砖的数量进行分类,在其中会有相同元素的排列问题,需用到“缩倍法”.采用分类计数原理,求得总的方法数.【题目详解】(1)先贴如图这块瓷砖,然后再贴剩下的部分,按如下分类:5个:,3个,2个:,1个,4个:,(2)左侧两列如图贴砖,然后贴剩下的部分:3个:,1个,2个:,综上,一共有(种).故答案为:11.【答案点睛】本题考查了分类计数原理,排列问题,其中涉及到相同元素的排列,用到了“缩倍法”的思想.属于中档题.15.【答案解析】
计算sinα,再利用诱导公式计算得到答案.【题目详解】由题意可得x=1,y=2,r,∴sinα,∴sin(π﹣α)=sinα.故答案为:.【答案点睛】本题考查了三角函数定义,诱导公式,意在考查学生的计算能力.16.【答案解析】
由于,且,则,得,则.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)(2)证明见解析【答案解析】
(1)由已知可得,构造等比数列即可求出通项公式;(2)当时,由,可求,时,由,可证,验证时,不等式也成立,即可得证.【题目详解】(1)由可得,,即,所以,解得,(2)当时,,,当时,,综上,由可得递增,,时;所以,综上:故.【答案点睛】本题主要考查了递推数列求通项公式,利用放缩法证明不等式,涉及等比数列的求和公式,属于难题.18.(1)证明见详解;(2)或或【答案解析】
(1)(2)首先用基本不等式得到,然后解出不等式即可【题目详解】(1)因为所以(2)当时所以当且仅当即时等号成立因为存在,且,使得成立所以所以或解得:或或【答案点睛】1.要熟练掌握绝对值的三角不等式,即2.应用基本不等式求最值时要满足“一正二定三相等”.19.(1);(2)(i)详见解析;(ii)会超过;详见解析【答案解析】
(1)利用组合进行计算以及概率表示,可得结果.(2)(i)写出X所有可能取值,并计算相对应的概率,列出表格可得结果.(ii)由(i)的条件结合7月与8月空气质量所对应的概率,可得7月与8月经济损失的期望和,最后7月、8月、9月经济损失总额的数学期望与2.88万元比较,可得结果.【题目详解】(1)设ξ为选取的3天中空气质量为优的天数,则P(ξ=2),P(ξ=3),则这3天中空气质量至少有2天为优的概率为;(2)(i),,,X的分布列如下:X02201480P(ii)由(i)可得:E(X)=02201480302(元),故该企业9月的经济损失的数学期望为30E(X),即30E(X)=9060元,设7月、8月每天因空气质量造成的经济损失为Y元,可得:,,,E(Y)=02201480320(元),所以该企业7月、8月这两个月因空气质量造成经济损失总额的数学期望为320×(31+31)=19840(元),由19840+9060=28900>28800,即7月、8月、9月这三个月因空气质量造成经济损失总额的数学期望会超过2.88万元.【答案点睛】本题考查概率中的分布列以及数学期望,属基础题。20.(1);(2).【答案解析】
(1)直接根据特殊角的三角函数值求出,结合正弦定理求出;(2)结合第一问的结论以及余弦定理即可求解.【题目详解】解:(1)∵,且,∴,由正弦定理,∴,∵∴锐角,∴(2)∵,∴∴∴在中,由余弦定理得∴【答案点睛】本题主要考查了正弦定理和余弦定理的运用.考查了学生对三角函数基础知识的综合运用.21.(Ⅰ);(Ⅱ);(Ⅲ)证明见解析.【答案解析】试题分析:将,求出切线方程求导后讨论当时和时的单调性证明,求出实数的取值范围先求出、的通项公式,利用当时,得,下面证明:解析:(Ⅰ)因为,所以,,切点为.由,所以,所以曲线在处的切线方程为,即(Ⅱ)由,令,则(当且仅当取等号).故在上为增函数.①当时,,故在上为增函数,所以恒成立,故符合题意;②当时,由于,,根据零点存在定理,必存在,使得,由于在上为增
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025标准门面房租赁合同范本
- 2025年代理记账合同正式签订新政策助力企业发展
- 2025房屋租赁代理合同书样本
- 2025果园承包经营合同协议书
- 2025店铺租赁合同模板「详细版」
- 2025房产买卖合同补充协议
- 2025南昌市建筑材料买卖合同范本
- 2025农田租赁合同书样本
- 2025最权威的工程承包合同模板
- 2025违反商品房买卖合同的法律责任
- 创新物业服务管理的思路与方法
- 上市公司涉税风险分析报告
- 少数民族维吾尔族民俗文化介绍图文课件
- 引导接车监控装置操作办法
- 《中国马克思主义与当代》部分课后题-参考答案
- 读书分享交流会《外婆的道歉信》课件
- 科技论文写作与学术规范课件
- 医疗器械自查表【模板】
- 2023学年完整公开课版《2BM3U2Rules》教学
- 曼陀罗绘画疗法
- 四年级下册英语素材单元知识点总结 陕旅版
评论
0/150
提交评论