2022-2023学年河北省石家庄市外国语学校数学九上期末考试模拟试题含解析_第1页
2022-2023学年河北省石家庄市外国语学校数学九上期末考试模拟试题含解析_第2页
2022-2023学年河北省石家庄市外国语学校数学九上期末考试模拟试题含解析_第3页
2022-2023学年河北省石家庄市外国语学校数学九上期末考试模拟试题含解析_第4页
2022-2023学年河北省石家庄市外国语学校数学九上期末考试模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.下列事件中,必然发生的事件是()A.随意翻到一本书的某页,这页的页码是奇数B.通常温度降到0℃以下,纯净的水结冰C.地面发射一枚导弹,未击中空中目标D.测量某天的最低气温,结果为-150℃2.对于函数,下列说法错误的是()A.这个函数的图象位于第一、第三象限B.这个函数的图象既是轴对称图形又是中心对称图形C.当x>0时,y随x的增大而增大D.当x<0时,y随x的增大而减小3.如图,在4×4的网格中,点A,B,C,D,H均在网格的格点上,下面结论:①点H是△ABD的内心②点H是△ABD的外心③点H是△BCD的外心④点H是△ADC的外心其中正确的有()A.1个 B.2个 C.3个 D.4个4.如图,的外切正六边形的边长为2,则图中阴影部分的面积为()A. B. C. D.5.抛物线y=(x﹣1)2﹣2的顶点是()A.(1,﹣2) B.(﹣1,2) C.(1,2) D.(﹣1,﹣2)6.已知关于x的方程x2+bx+a=0有一个根是﹣a(a≠0),则a﹣b的值为()A.a﹣b=1 B.a﹣b=﹣1 C.a﹣b=0 D.a﹣b=±17.对于函数,下列结论错误的是()A.图象顶点是 B.图象开口向上C.图象关于直线对称 D.图象最大值为﹣98.如图,⊙O的半径为2,点O到直线l的距离为3,点P是直线l上的一个动点.若PB切⊙O于点B,则PB的最小值是()A. B. C.3 D.29.在平面直角坐标系中,将抛物线向左平移1个单位,再向下平移1个单位后所得抛物线的表达式为()A. B.C. D.10.如图,在平面直角坐标系中,点在直线上,连接,将线段绕点顺时针旋转90°,点的对应点恰好落在直线上,则的值为()A.2 B.1 C. D.二、填空题(每小题3分,共24分)11.如图,把直角三角板的直角顶点放在破损玻璃镜的圆周上,两直角边与圆弧分别交于点、.量得,,则该圆玻璃镜的半径是__________.12.方程的解为_____.13.将一枚标有数字1、2、3、4、5、6的均匀正方体骰子抛掷一次,则向上一面数字为奇数的概率等于_____.14.如图,将△ABC绕着点C按顺时针方向旋转20°,B点落在B'位置,A点落在A'位置,若AC⊥A'B',则∠BAC的度数是__.

15.二次函数y=ax2+bx+3的图象经过点A(-1,0),B(3,0),那么一元二次方程ax2+bx=0的根是_____.16.某居民小区为了解小区500户居民家庭平均月使用塑料袋的数量情况,随机调查了10户居民家庭月使用塑料袋的数量,结果如下(单位:只):65,70,85,74,86,78,74,92,82,1.根据统计情况,估计该小区这500户家庭每月一共使用塑料袋_________只.17.若点P(2a+3b,﹣2)关于原点的对称点为Q(3,a﹣2b),则(3a+b)2020=______.18.如图,在半径为5的中,弦,,垂足为点,则的长为__________.三、解答题(共66分)19.(10分)如图,一次函数的图象与反比例函数的图象相交于A(2,1),B两点.(1)求出反比例函数与一次函数的表达式;(2)请直接写出B点的坐标,并指出使反比例函数值大于一次函数值的x的取值范围.20.(6分)某商场购进一批单价为4元的日用品.若按每件5元的价格销售,每月能卖出3万件;若按每件6元的价格销售,每月能卖出2万件,假定每月销售件数y(件)与价格x(元/件)之间满足一次函数关系.(1)试求y与x之间的函数关系式;(2)当销售价格定为多少时,才能使每月的利润最大?每月的最大利润是多少?21.(6分)如图,在中,,点在边上,经过点和点且与边相交于点.(1)求证:是的切线;(2)若,求的半径.22.(8分)如图,已知∠BAC=30°,把△ABC绕着点A顺时针旋转到△ADE的位置,使得点D,A,C在同一直线上.(1)△ABC旋转了多少度?(2)连接CE,试判断△AEC的形状;(3)求∠AEC的度数.23.(8分)如图,AD、A′D′分别是△ABC和△A′B′C′的中线,且.判断△ABC和△A′B′C′是否相似,并说明理由.24.(8分)如图,在10×10的网格中,有一格点△ABC(说明:顶点都在网格线交点处的三角形叫做格点三角形).(1)将△ABC先向右平移5个单位,再向上平移2个单位,得到△A'B'C',请直接画出平移后的△A'B'C';(2)将△A'B'C'绕点C'顺时针旋转90°,得到△A''B''C',请直接画出旋转后的△A''B''C';(3)在(2)的旋转过程中,求点A'所经过的路线长(结果保留π).25.(10分)如图,CD是一高为4米的平台,AB是与CD底部相平的一棵树,在平台顶C点测得树顶A点的仰角,从平台底部向树的方向水平前进3米到达点E,在点E处测得树顶A点的仰角,求树高AB(结果保留根号).26.(10分)在直角三角形中,,点为上的一点,以点为圆心,为半径的圆弧与相切于点,交于点,连接.(1)求证:平分;(2)若,求圆弧的半径;(3)在的情况下,若,求阴影部分的面积(结果保留和根号)

参考答案一、选择题(每小题3分,共30分)1、B【解析】解:A.随意翻到一本书的某页,这页的页码是奇数,是随机事件;B.通常温度降到0℃以下,纯净的水结冰,是必然事件;C.地面发射一枚导弹,未击中空中目标,是随机事件;D.测量某天的最低气温,结果为-150℃,是不可能事件.故选B.2、C【解析】试题分析:根据反比例函数的图像与性质,可由题意知k=4>0,其图像在一三象限,且在每个象限y随x增大而减小,它的图像即是轴对称图形又是中心对称图形.故选C点睛:反比例函数的图像与性质:1、当k>0时,图像在一、三象限,在每个象限内,y随x增大而减小;2、当k<0时,图像在二、四象限,在每个象限内,y随x增大而增大.3、反比例函数的图像即是轴对称图形又是中心对称图形.3、C【分析】先利用勾股定理计算出AB=BC=,AD=,CD=,AC=,再利用勾股定理的逆定理可得到∠ABC=∠ADC=90°,则CB⊥AB,CD⊥AD,根据角平分线定理的逆定理可判断点C不在∠BAD的角平分线上,则根据三角形内心的定义可对①进行判断;由于HA=HB=HC=HD=,则根据三角形外心的定义可对②③④进行判断.【详解】解:∵AB=BC=,AD=,CD=,AC=,∴AB2+BC2=AC2,CD2+AD2=AC2,∴△ABC和△ADC都为直角三角形,∠ABC=∠ADC=90°,∵CB⊥AB,CD⊥AD,而CB≠CD,∴点C不在∠BAD的角平分线上,∴点H不是△ABD的内心,所以①错误;∵HA=HB=HC=HD=,∴点H是△ABD的外心,点H是△BCD的外心,点H是△ADC的外心,所以②③④正确.故选:C.【点睛】本题考查了三角形的内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.也考查了三角形的外心和勾股定理.4、A【分析】由于六边形ABCDEF是正六边形,所以∠AOB=60°,故△OAB是等边三角形,OA=OB=AB=2,设点G为AB与⊙O的切点,连接OG,则OG⊥AB,OG=OA•sin60°,再根据S阴影=S△OAB-S扇形OMN,进而可得出结论.【详解】∵六边形ABCDEF是正六边形,

∴∠AOB=60°,

∴△OAB是等边三角形,OA=OB=AB=2,

设点G为AB与⊙O的切点,连接OG,则OG⊥AB,

∴OG=OA∙sin60°=2×

=

∴S

阴影

=S

△OAB

-S

扇形OMN

=

×2×

-

故选A.【点睛】考核知识点:正多边形与圆.熟记扇形面积公式是关键.5、A【分析】根据顶点式的坐标特点直接写出顶点坐标即可解决.【详解】解:∵y=(x﹣1)2﹣2是抛物线解析式的顶点式,根据顶点式的坐标特点可知,顶点坐标为(1,﹣2).故选:A.【点睛】本题考查了顶点式,解决本题的关键是正确理解二次函数顶点式中顶点坐标的表示方法.6、B【分析】把x=﹣a代入方程得到一个二元二次方程,方程的两边都除以a,即可得出答案.【详解】把x=﹣a代入方程得:(﹣a)2﹣ab+a=0,a2﹣ab+a=0,∵a≠0,∴两边都除以a得:a﹣b+1=0,即a﹣b=﹣1,故选:B.【点睛】此题考查一元二次方程的解,是方程的解即可代入方程求其他未知数的值或是代数式的值.7、D【分析】根据函数解析式和二次函数的性质可以判断各个选项中的说法是否正确,本题得以解决.【详解】解:A.∵函数y=(x+2)2-9,∴该函数图象的顶点坐标是(-2,-9),故选项A正确;B.a=1>0,该函数图象开口向上,故选项B正确;C.∵函数y=(x+2)2-9,∴该函数图象关于直线x=-2对称,故选项C正确;D.当x=-2时,该函数取得最小值y=-9,故选项D错误;故选:D.【点睛】本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.8、B【分析】由切线的性质可得△OPB是直角三角形,则PB2=OP2﹣OB2,如图,又OB为定值,所以当OP最小时,PB最小,根据垂线段最短,知OP=3时PB最小,然后根据勾股定理即可求出答案.【详解】解:∵PB切⊙O于点B,∴∠OBP=90°,∴PB2=OP2﹣OB2,如图,∵OB=2,∴PB2=OP2﹣4,即PB=,∴当OP最小时,PB最小,∵点O到直线l的距离为3,∴OP的最小值为3,∴PB的最小值为.故选:B.【点睛】此题主要考查了切线的性质、勾股定理及垂线段最短等知识,属于常考题型,如何确定PB最小时点P的位置是解题的关键.9、B【分析】直接关键二次函数的平移规律“左加右减,上加下减”解答即可.【详解】将抛物线向左平移1个单位,再向下平移1个单位后所得抛物线的表达式为:故选:B【点睛】本题考查的是二次函数的平移,掌握其平移规律是关键,需注意:二次函数平移时必须化成顶点式.10、D【分析】根据已知条件可求出m的值,再根据“段绕点顺时针旋转90°”求出点B坐标,代入即可求出b的值.【详解】解:∵点在直线上,∴,∴又∵点B为点A绕原点顺时针旋转90°所得,∴点B坐标为,又∵点B在直线,代入得∴故答案为D.【点睛】本题考查了一次函数与旋转的相关知识,解题的关键是能够根据已知条件得出点B的坐标.二、填空题(每小题3分,共24分)11、1.【解析】解:∵∠MON=90°,∴为圆玻璃镜的直径,,∴半径为.故答案为:1.12、,【分析】因式分解法即可求解.【详解】解:x(2x-5)=0,,【点睛】本题考查了用提公因式法求解一元二次方程的解,属于简单题,熟悉解题方法是解题关键.13、.【分析】根据概率公式计算概率即可.【详解】∵在正方体骰子中,朝上的数字共有6种,为奇数的情况有3种,分别是:1,3,5,∴朝上的数字为奇数的概率是=;故答案为:.【点睛】此题考查的是求概率问题,掌握概率公式是解决此题的关键.14、70°【解析】由旋转的角度易得∠ACA′=20°,若AC⊥A'B',则∠A′、∠ACA′互余,由此求得∠ACA′的度数,由于旋转过程并不改变角的度数,因此∠BAC=∠A′,即可得解.【详解】解:由题意知:∠ACA′=20°;

若AC⊥A'B',则∠A′+∠ACA′=90°,

得:∠A′=90°-20°=70°;

由旋转的性质知:∠BAC=∠A′=70°;

故∠BAC的度数是70°.故答案是:70°【点睛】本题考查旋转的性质:旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①定点-旋转中心;②旋转方向;③旋转角度.15、0,2【分析】将点A,B代入二次函数解析式,求得的值,再代入,解出答案.【详解】∵经过点A(-1,0),B(3,0)∴,解得∴即为解得:或故答案为:或.【点睛】熟练掌握待定系数法求二次函数解析式,及提取公因式法解一元二次方程是解题的关键.16、2【分析】先求出10户居民平均月使用塑料袋的数量,然后估计500户家庭每月一共使用塑料袋的数量即可.【详解】解:10户居民平均月使用塑料袋的数量为:(65+70+85+74+86+78+74+92+82+1)÷10=80,∴500×80=2(只),故答案为2.【点睛】本题考查统计思想,用样本平均数估计总体平均数,10户居民平均月使用塑料袋的数量是解答本题的关键.17、1【分析】直接利用关于原点对称点的性质得出3a+b=﹣1,进而得出答案.【详解】解:∵点P(2a+3b,﹣2)关于原点的对称点为Q(3,a﹣2b),∴,故3a+b=﹣1,则(3a+b)2020=1.故答案为:1.【点睛】此题主要考查了关于原点对称点的性质,正确记忆横纵坐标的符号关系是解题关键.18、4【分析】连接OA,根据垂径定理得到AP=AB,利用勾股定理得到答案.【详解】连接OA,∵AB⊥OP,∴AP=AB=×6=3,∠APO=90°,又OA=5,∴OP===4,故答案为:4.【点睛】本题考查的是垂径定理的应用,掌握垂直于弦的直径平分这条弦是解题的关键.三、解答题(共66分)19、(1),;(1)B(﹣1,﹣1),x<﹣1或0<x<1.【分析】(1)先将点A(1,1)代入求得k的值,再将点A(1,1)代入,求得m即可.(1)当反比例函数的值大于一次例函数的值时,即一次函数的图象在反比例函数的图象下方时,x的取值范围.【详解】解:(1)将A(1,1)代入中,得k=1×1=1,∴反比例函数的表达式为,将A(1,1)代入中,得1+m=1,∴m=﹣1,∴一次函数的表达式为;(1)解得或所以B(﹣1,﹣1);当x<﹣1或0<x<1时,反比例函数的值大于一次函数的值.考点:反比例函数与一次函数的交点问题.20、(1)(2)当销售价格定为6元时,每月的利润最大,每月的最大利润为40000元【解析】试题分析:(1)设y=kx+b,再由题目已知条件不难得出解析式;(2)设利润为W,将W用含x的式子表示出来,W为关于x的二次函数,要求最值,将解析式化为顶点式即可求出.试题解析:解:(1)设y=kx+b,根据题意得:,解得:k=-1,b=8,所以,y与x的函数关系式为y=-x+8;(2)设利润为W,则W=(x-4)(-x+8)=-(x-6)2+4,因为a=-1<0,所以当x=6时,W最大为4万元.当销售价格定为6元时,才能使每月的利润最大,每月的最大利润是4万元.点睛:要求最值,一般讲二次函数解析式写成顶点式.21、(1)见解析;(2)【分析】(1)连接,根据等腰三角形的性质得到,求得,根据三角形的内角和得到,于是得到是的切线;(2)连接,推出是等边三角形,得到,求得,得到,于是得到结论.【详解】(1)证明:连接,∵,∴,∵,∴,∴,∴,∴是的切线;(2)解:连接,∵,∴是等边三角形,∴,∴,∴,∴,∴的半径.【点睛】本题考查了切线的判定和性质,等腰三角形的性质,等边三角形的判定和性质,正确的作出辅助线是解题的关键.22、(1)150°;(2)详见解析;(3)15°【分析】(1)根据旋转的性质,利用补角性质即可解题;(2)根据旋转后的对应边相等即可解题;(3)利用外角性质即可解题.【详解】解:(1)∵点D,A,C在同一直线上,∴∠BAD=180°-∠BAC=180°-30°=150°,∴△ABC旋转了150°;(2)根据旋转的性质,可知AC=AE,∴△AEC是等腰三角形;(3)根据旋转的性质可知,∠CAE=∠BAD=150°,AC=AE,∴∠AEC=∠ACE=(180°-∠CAE)÷2=(180°-150°)÷2=15°.【点睛】本题考查了旋转变换的性质,理解旋转三要素:旋转中心、旋转方向、旋转角度的概念、掌握旋转变换的性质是解题的关键.23、△ABC∽△A'B'C',理由见解析【分析】由题意知,根据相似三角形的判定定理:三边对应成比例的两个三角形相似,可证得△ABD∽△A'B'D',进而可得∠B=∠B',再根据两边对应成比例及其夹角相等的两个三角形相似,即可得△ABC∽△A'B'C'.【详解】△ABC∽△A'B'C',理由:∵∴△ABD∽△A'B'D',∴∠B=∠B',∵AD、A'D'分别是△ABC和△A'B'C'的中线∴,,∴,在△ABC和△A'B'C'中∵,且∠B=∠B'∴△ABC∽△A'B'C'.【点睛】本题考查相似三角形的判定,解题的关键是熟练掌握相似三角形的判定定理:三边对应成比例的两个三角形相似;两边对应成比例及其夹角相等的两个三角形相似.24、(1)见解析,(2)见解析,(3)π【解析】(1)将三个顶点分别向右平移5个单位,再向上平移2个单位得到对应点,再首尾顺次连接即可得;(2)作出点A′,B′绕点C顺时针旋转90°得到的对应点,再首尾

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论