2023届长沙市重点中学九年级数学第一学期期末预测试题含解析_第1页
2023届长沙市重点中学九年级数学第一学期期末预测试题含解析_第2页
2023届长沙市重点中学九年级数学第一学期期末预测试题含解析_第3页
2023届长沙市重点中学九年级数学第一学期期末预测试题含解析_第4页
2023届长沙市重点中学九年级数学第一学期期末预测试题含解析_第5页
免费预览已结束,剩余12页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.一元二次方程x2+x﹣1=0的两根分别为x1,x2,则=()A. B.1 C. D.2.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F,若AC=3,AB=5,则CE的长为()A. B. C. D.3.如图,矩形ABCD中,AB=4,AD=8,E为BC的中点,F为DE上一动点,P为AF中点,连接PC,则PC的最小值是()A.4 B.8 C.2 D.44.抛物线y=(x﹣2)2﹣3的顶点坐标是()A.(2,﹣3)B.(﹣2,3)C.(2,3)D.(﹣2,﹣3)5.计算:tan45°+sin30°=(

)A. B. C. D.6.将二次函数y=x2的图象向右平移一个单位长度,再向下平移3个单位长度所得的图象解析式为()A.y=(x﹣1)2+3 B.y=(x+1)2+3 C.y=(x﹣1)2﹣3 D.y=(x+1)2﹣37.下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.8.抛物线y=ax2+bx+c的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图所示,则以下结论:①b2﹣4ac<0;②a+b+c<0;③c﹣a=2;④方程ax2+bx+c=0有两个相等的实数根.其中正确结论的个数为()A.1个 B.2个 C.3个 D.4个9.在Rt△ABC中,∠C=90°,sinA=,BC=6,则AB=()A.4 B.6 C.8 D.1010.如果某人沿坡度为的斜坡前进10m,那么他所在的位置比原来的位置升高了()A.6m B.8m C.10m D.12m二、填空题(每小题3分,共24分)11.计算:|﹣3|﹣sin30°=_____.12.一元二次方程的解为________.13.将抛物线向左平移2个单位后所得到的抛物线为________14.已知矩形ABCD,AB=3,AD=5,以点A为圆心,4为半径作圆,则点C与圆A的位置关系为__________.15.在平面直角坐标系xOy中,点O的坐标为O,□OABC的顶点A在反比例函数的图象上,顶点B在反比例函数的图象上,点C在x轴正半轴上,则□OABC的面积是________16.__________.17.如图,正三角形AFG与正五边形ABCDE内接于⊙O,若⊙O的半径为3,则的长为______________.18.一只小狗自由自在地在如图所示的某个正方形场地跑动,然后随意停在图中阴影部分的概率是__.三、解答题(共66分)19.(10分)如图,双曲线经过点P(2,1),且与直线y=kx﹣4(k<0)有两个不同的交点.(1)求m的值.(2)求k的取值范围.20.(6分)如图,锐角三角形中,,分别是,边上的高,垂足为,.(1)证明:.(2)若将,连接起来,则与能相似吗?说说你的理由.21.(6分)如图,AC为⊙O的直径,B为⊙O上一点,∠ACB=30°,延长CB至点D,使得CB=BD,过点D作DE⊥AC,垂足E在CA的延长线上,连接BE.(1)求证:BE是⊙O的切线;(2)当BE=3时,求图中阴影部分的面积.22.(8分)已知,如图,点E在平行四边形ABCD的边CD上,且,设,.(1)用、表示;(直接写出答案)(2)设,在答题卷中所给的图上画出的结果.23.(8分)解方程(1)x2-6x-7=0;(2)(2x-1)2=1.24.(8分)为了改善生活环境,近年来,无为县政府不断加大对城市绿化的资金投入,使全县绿地面积不断增加.从2016年底到2018年底,我县绿地面积变化如图所示,求我县绿地面积的年平均增长率.25.(10分)如图,在△ABC中,O是AB边上的点,以O为圆心,OB为半径的⊙0与AC相切于点D,BD平分∠ABC,AD=OD,AB=12,求CD的长.26.(10分)为吸引市民组团去风景区旅游,观光旅行社推出了如下收费标准:某单位员工去风景区旅游,共支付给旅行社旅游费用10500元,请问该单位这次共有多少员工去风景区旅游?

参考答案一、选择题(每小题3分,共30分)1、B【解析】根据根与系数的关系得到x1+x2=-1,x1•x2=-1,然后把进行通分,再利用整体代入的方法进行计算.【详解】根据题意得x1+x2=-1,x1•x2=-1,所以==1,故选B.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=-,x1•x2=.2、A【分析】根据三角形的内角和定理得出∠CAF+∠CFA=90°,∠FAD+∠AED=90°,根据角平分线和对顶角相等得出∠CEF=∠CFE,即可得出EC=FC,再利用相似三角形的判定与性质得出答案.【详解】过点F作FG⊥AB于点G,∵∠ACB=90°,CD⊥AB,∴∠CDA=90°,∴∠CAF+∠CFA=90°,∠FAD+∠AED=90°,∵AF平分∠CAB,∴∠CAF=∠FAD,∴∠CFA=∠AED=∠CEF,∴CE=CF,∵AF平分∠CAB,∠ACF=∠AGF=90°,∴FC=FG,∵∠B=∠B,∠FGB=∠ACB=90°,∴△BFG∽△BAC,∴,∵AC=3,AB=5,∠ACB=90°,∴BC=4,∴,∵FC=FG,∴,解得:FC=,即CE的长为.故选A.【点睛】本题考查了直角三角形性质、等腰三角形的性质和判定,三角形的内角和定理以及相似三角形的判定与性质等知识,关键是推出∠CEF=∠CFE.3、D【分析】根据中位线定理可得出点点P的运动轨迹是线段P1P2,再根据垂线段最短可得当CP⊥P1P2时,PC取得最小值;由矩形的性质以及已知的数据即可知CP1⊥P1P2,故CP的最小值为CP1的长,由勾股定理求解即可.【详解】解:如图:当点F与点D重合时,点P在P1处,AP1=DP1,当点F与点E重合时,点P在P2处,EP2=AP2,∴P1P2∥DE且P1P2=DE当点F在ED上除点D、E的位置处时,有AP=FP由中位线定理可知:P1P∥DF且P1P=DF∴点P的运动轨迹是线段P1P2,∴当CP⊥P1P2时,PC取得最小值∵矩形ABCD中,AB=4,AD=8,E为BC的中点,∴△ABE、△CDE、△DCP1为等腰直角三角形,DP1=2∴∠BAE=∠DAE=∠DP1C=45°,∠AED=90°∴∠AP2P1=90°∴∠AP1P2=45°∴∠P2P1C=90°,即CP1⊥P1P2,∴CP的最小值为CP1的长在等腰直角CDP1中,DP1=CD=4,∴CP1=4∴PB的最小值是4.故选:D.【点睛】本题考查轨迹问题、矩形的性质等知识,解题的关键是学会利用特殊位置解决问题,有难度.4、A【解析】已知抛物线解析式为顶点式,可直接写出顶点坐标.【详解】:∵y=(x﹣2)2﹣3为抛物线的顶点式,根据顶点式的坐标特点可知,

∴抛物线的顶点坐标为(2,-3).

故选A..【点睛】本题考查了将解析式化为顶点式y=a(x-h)2+k,顶点坐标是(h,k),对称轴是x=h.5、C【解析】代入45°角的正切函数值和30°角的正弦函数值计算即可.【详解】解:原式=故选C.【点睛】熟记“45°角的正切函数值和30°角的正弦函数值”是正确解答本题的关键.6、C【分析】根据平移原则:上→加,下→减,左→加,右→减写出解析式.【详解】解:将二次函数y=x2的图象向右平移一个单位长度,再向下平移1个单位长度所得的图象解析式为:y=(x﹣1)2﹣1.故选:C.【点睛】主要考查了函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.7、B【分析】中心对称图形绕某一点旋转180°后的图形与原来的图形重合,轴对称图形被一条直线分割成的两部分沿着对称轴折叠时,互相重合,据此逐一判断出既是轴对称图形又是中心对称图形的是哪个即可.【详解】A是轴对称图形,不是中心对称图形,故选项错误;B既是轴对称图形,又是中心对称图形,故选项正确;C不是轴对称图形,是中心对称图形,故选项错误;D不是轴对称图形,是中心对称图形,故选项错误;故选B【点睛】本题考查了轴对称图形和中心对称图形的判断,掌握其定义即可快速判断出来.8、B【分析】先从二次函数图像获取信息,运用二次函数的性质一—判断即可.【详解】解:∵二次函数与x轴有两个交点,∴b2-4ac>0,故①错误;∵抛物线与x轴的另一个交点为在(0,0)和(1,0)之间,且抛物线开口向下,∴当x=1时,有y=a+b+c<0,故②正确;∵函数图像的顶点为(-1,2)∴a-b+c=2,又∵由函数的对称轴为x=-1,∴=-1,即b=2a∴a-b+c=a-2a+c=c-a=2,故③正确;由①得b2-4ac>0,则ax2+bx+c=0有两个不等的实数根,故④错误;综上,正确的有两个.故选:B.【点睛】本题考查了二次函数的图像与系数的关系,从二次函数图像上获取有用信息和灵活运用数形结合思想是解答本题的关键.9、D【详解】解:在Rt△ABC中,∠C=90°,sinA==,BC=6∴AB==10,故选D.考点:解直角三角形;10、A【解析】设斜坡的铅直高度为3x,水平距离为4x,然后根据勾股定理求解即可.【详解】设斜坡的铅直高度为3x,水平距离为4x,由勾股定理得9x2+16x2=100,∴x=2,∴3x=6m.故选A.【点睛】此题主要考查坡度坡角及勾股定理的运用,需注意的是坡度是坡角的正切值,是铅直高度h和水平宽l的比,我们把斜坡面与水平面的夹角叫做坡角,若用α表示坡角,可知坡度与坡角的关系是.二、填空题(每小题3分,共24分)11、【分析】利用绝对值的性质和特殊角的三角函数值计算即可.【详解】原式=.故答案为:.【点睛】本题主要考查绝对值的性质及特殊角的三角函数值,掌握绝对值的性质及特殊角的三角函数值是解题的关键.12、,【解析】利用“十字相乘法”对等式的左边进行因式分解.【详解】由原方程,得,则或,解得,.故答案为:,.【点睛】本题考查了解一元二次方程-因式分解法.因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).13、【分析】根据平移规律“左加右减,上加下减”即可写出表达式.【详解】根据函数的图形平移规律可知:抛物线向左平移2个单位后所得到的抛物线为.【点睛】本题考查了平移的知识,掌握函数的图形平移规律是解题的关键.14、点C在圆外【分析】由r和CA,AB、DA的大小关系即可判断各点与⊙A的位置关系.【详解】解:∵AB=3厘米,AD=5厘米,∴AC=厘米,∵半径为4厘米,∴点C在圆A外【点睛】本题考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.15、3【分析】根据平行四边形的性质和反比例函数系数k的几何意义即可求得.【详解】解:如图作BD⊥x轴于D,延长BA交y轴于E,

∵四边形OABC是平行四边形,

∴AB∥OC,OA=BC,

∴BE⊥y轴,

∴OE=BD,

∴Rt△AOE≌Rt△CBD(HL),

根据系数k的几何意义,S矩形BDOE=5,S△AOE=1,

∴四边形OABC的面积=5-1-1=3,

故选:C.【点睛】本题考查了反比例函数的比例系数k的几何意义、平行四边形的性质等,有一定的综合性16、【分析】直接代入特殊角的三角函数值进行计算即可.【详解】.故答案为:.【点睛】本题考查了特殊角的三角函数值,熟记特殊角的三角函数值是解题的关键.17、【分析】连接OB,OF,根据正五边形和正三角形的性质求出∠BAF=24°,再由圆周角定理得∠BOF=48°,最后由弧长公式求出的长.【详解】解:连接OB,OF,如图,根据正五边形、正三角形和圆是轴对称图形可知∠BAF=∠EAG,∵△AFG是等边三角形,∴∠FAG=60°,∵五边形ABCDE是正五边形,∴∠BAE=,∴∠BAF=∠EAG=(∠BAE-∠FAG)=×(108°-60°)=24°,∴∠BOF=2∠BAF=2×24°=48°,∵⊙O的半径为3,∴的弧长为:故答案为:【点睛】本题主要考查正多边形与圆、弧长公式等知识,得出圆心角度数是解题关键.18、.【分析】根据概率公式求概率即可.【详解】图上共有16个方格,黑色方格为7个,小狗最终停在黑色方格上的概率是.故答案为:.【点睛】此题考查的是求概率问题,掌握概率公式是解决此题的关键.三、解答题(共66分)19、(1)m=2;(2)k的取值范围是﹣2<k<0.【解析】(1)将点P坐标代入,利用待定系数法求解即可;(2)由题意可得关于x的一元二次方程,根据有两个不同的交点,可得△=(﹣4)2﹣4k•(﹣2)>0,求解即可.【详解】(1)∵双曲线经过点P(2,1),∴m=2×1=2;(2)∵双曲线与直线y=kx﹣4(k<0)有两个不同的交点,∴,整理得:kx2﹣4x﹣2=0,∴△=(﹣4)2﹣4k•(﹣2)>0,∴k>﹣2,∴k的取值范围是﹣2<k<0.【点睛】本题考查了反比例函数与一次函数综合,涉及了待定系数法、一元二次方程根的判别式等,熟练掌握相关知识是解题的关键.20、(1)见解析;(2)能,理由见解析.【分析】(1)根据已知利用有两个角相等的三角形相似判定即可;

(2)根据第一问可得到AD:AE=AC:AB,有一组公共角∠A,则可根据两组对应边的比相等且相应的夹角相等的两个三角形相似进行判定.【详解】证明:.证明:∵,分别是,边上的高,∴.∵,∴.若将,连接起来,则与能相似吗?说说你的理由.∵,∴.∴AD:AC=AE:AB∵,∴.【点睛】考查相似三角形的判定与性质,掌握相似三角形的判定定理是解题的关键.21、(1)证明见解析;(2)【解析】(1)连接,根据和都是等腰三角形,即可得到再根据三角形的内角和得到进而得出是⊙的切线;(2)根据,,可以得到半圆的面积,即可的面积,即可得到阴影部分的面积.【详解】解:(1)如图所示,连接,∵,∴,∵,,∴中,,∴,∴中,,∴,∴是⊙的切线;(2)当时,,∵为⊙的直径,∴,又∵,∴,∴,∴阴影部分的面积=半圆的面积-的面积=.22、(1);(2)见解析【分析】(1)先表示出,继而可表示出;(2)延长AE、BC交与G即可.【详解】解:(1)四边形是平行四边形,,∵,,;(2)如图,延长AE、BC交与G,则即为所求.四边形是平行四边形,∴AD∥BC,∴,∴,又∵,∴∴.【点睛】本题考查了平面向量及平行四边形的性质,解答本题注意利用平行线分线段成比例的知识,难度一般.23、(1)x1=7,x2=-1;(2)x1=2,x2=-1【分析】(1)根据配方法法即可求出答案.(2)根据直接开方法即可求出答案;【详解】解:(1)x2-6x+1-1-7=0(x-3)2=16x-3=±4x1=7,x2=-1(2)2x-1=±32x=1±3x1=2,x2=-1【点睛】本题考查了解一元二次方程,观察所给方程的形式,分别使用配方法和直接开方法求解.24、年平均增长率为10%.【分析】根据图表可知2016年底城市绿地面积300公顷,2018年底城市绿地面积363公顷,设年平均增长率是,则2017年的绿地面积是,2018年的绿地面积是,即可列出方程解答.【详解】解:设这两年年平均增长率为x,则300(x+1)2=363,解得:x1=0.1,x2=﹣2.1(不符合实际意义,舍去)∴x=0.1=10%,答:年平均增长率为10%.【点睛】本题考查数量平均变化率问题,解题的关键是正确列出一元二次方程.原来的数量

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论