2022年湖南省长沙市天心区部分学校数学八年级第一学期期末考试试题含解析_第1页
2022年湖南省长沙市天心区部分学校数学八年级第一学期期末考试试题含解析_第2页
2022年湖南省长沙市天心区部分学校数学八年级第一学期期末考试试题含解析_第3页
2022年湖南省长沙市天心区部分学校数学八年级第一学期期末考试试题含解析_第4页
2022年湖南省长沙市天心区部分学校数学八年级第一学期期末考试试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.根据下列表述,不能确定具体位置的是()A.教室内的3排4列 B.渠江镇胜利街道15号C.南偏西 D.东经,北纬2.如图,给出了正方形ABCD的面积的四个表达式,其中错误的是()A.(x+a)(x+a) B.x2+a2+2axC.(x-a)(x-a) D.(x+a)a+(x+a)x3.如图,在等边中,,过边上一点作于点,点为延长线上一点,且,连接交于点,则的长为().A.2 B. C.3 D.4.如图,将周长为8的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长是()A.8 B.10 C.12 D.145.下列图形具有两条对称轴的是()A.等边三角形 B.平行四边形 C.矩形 D.正方形6.如图,下列条件中,不能证明△ABC≌△DCB的是()A.AB=DC,AC=DB B.AB=DC,∠ABC=∠DCB C.BO=CO,∠A=∠D D.AB=DC,∠DBC=∠ACB7.用四舍五入法将精确到千分位的近似数是()A. B. C. D.8.下列分式中,无论x取何值,分式总有意义的是()A. B. C. D.9.利用乘法公式计算正确的是()A.(2x﹣3)2=4x2+12x﹣9 B.(4x+1)2=16x2+8x+1C.(a+b)(a+b)=a2+b2 D.(2m+3)(2m﹣3)=4m2﹣310.下列各数组中,不是勾股数的是()A.,, B.,,C.,, D.,,(为正整数)二、填空题(每小题3分,共24分)11.关于x、y的方程组的解是,则n﹣m的值为_____.12.若分式方程﹣=2有增根,则a=_____.13.在平面直角坐标系中,点,,作,使与全等,则点C坐标为____点C不与点A重合14.在菱形ABCD中,对角线AC、BD交于点O,若△ABC的周长为32,BD=16,则菱形ABCD的面积为_____15.如图,在锐角△ABC中,AB=4,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是__________.16.若关于的方程的解不小于,则的取值范围是_______.17.若,,且,则__________.18.点在第四象限内,点到轴的距离是1,到轴的距离是2,那么点的坐标为_______.三、解答题(共66分)19.(10分)某中学对学生进行“校园安全知识”知识测试,并随机抽取部分学生的成绩进行分析,将成绩分为三个等级:不合格、一般、优秀,并绘制成如下两幅统计图.请你根据图中所给的信息解答下列问题:(1)抽取的人数是____________人;补全条形统计图;(2)“一般”等级所在扇形的圆心角的度数是________度.20.(6分)已知:点D是等边△ABC边上任意一点,∠ABD=∠ACE,BD=CE.(1)说明△ABD≌△ACE的理由;(2)△ADE是什么三角形?为什么?21.(6分)如图,平面直角坐标系中,、,且、满足(1)求、两点的坐标;(2)过点的直线上有一点,连接、,,如图2,当点在第二象限时,交轴于点,延长交轴于点,设的长为,的长为,用含的式子表示;(3)在(2)的条件下,如图3,当点在第一象限时,过点作交于点,连接,若,,求的长.22.(8分)如图,△ABC中,∠ACB=90°,D为AB上一点,过D点作AB垂线,交AC于E,交BC的延长线于F.(1)∠1与∠B有什么关系?说明理由.(2)若BC=BD,请你探索AB与FB的数量关系,并且说明理由.23.(8分)计算下列各式:(x﹣1)(x+1)=;(x﹣1)(x2+x+1)=;(x﹣1)(x3+x2+x+1)=;…(1)根据以上规律,直接写出下式的结果:(x﹣1)(x6+x5+x4+x3+x2+x+1)=;(2)你能否由此归纳出一般性的结论(x﹣1)(xn﹣1+xn﹣2+xn﹣3+…+x+1)=(其中n为正整数);(3)根据(2)的结论写出1+2+22+23+24+…+235的结果.24.(8分)如图是由边长为1个单位长度的小正方形组成的网格,的三个顶点都在格点上.(1)作出关于轴对称的,并写出点的坐标:.(2)求出的面积.25.(10分)如图,点A,C,D,B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF,求证:DE=CF.26.(10分)如图,在正方形网格中,每个小正方形的边长都是,每个小正方形的顶点叫做格点.网格中有一个格点(即三角形的顶点都在格点上).(1)在图中作出关于直线的对称图形(要求点与,与,与相对应).(2)在直线上找一点,使得的周长最小.

参考答案一、选择题(每小题3分,共30分)1、C【分析】根据平面内的点与有序实数对一一对应分别对各选项进行判断.【详解】A、教室内的3排4列,可以确定具体位置,不合题意;

B、渠江镇胜利街道15号,可以确定具体位置,不合题意;

C、南偏西30,不能确定具体位置,符合题意;

D、东经108°,北纬53°,可以确定具体位置,不合题意;

故选:C.【点睛】本题考查了坐标确定位置:平面内的点与有序实数对一一对应;记住直角坐标系中特殊位置点的坐标特征.2、C【详解】解:根据图可知,S正方形=(x+a)2=x2+2ax+a2=(x+a)a+(x+a)x,故选C.3、C【分析】过点D作DG∥BC交AC于点,根据等边三角形的性质和全等三角形的性质解答即可.【详解】解:过点D作DG∥BC交AC于点G,

∴∠ADG=∠B,∠AGD=∠ACB,∠FDG=∠E,

∵△ABC是等边三角形,

∴AB=AC,∠B=∠ACB=∠A=60°,

∴∠A=∠ADG=∠AGD=60°,

∴△ADG是等边三角形,

∴AG=AD,DH⊥AC,∴AH=HG=AG,

∵AD=CE,

∴DG=CE,

在△DFG与△EFC中

∴△DFG≌△EFC(AAS),∴GF=FC=GC

∴HF=HG+GF=AG+GC=AC=3,故选C.【点睛】此题考查全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.4、B【分析】根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC即可得出答案.【详解】根据题意,将周长为8的△ABC沿边BC向右平移1个单位得到△DEF,∴AD=1,BF=BC+CF=BC+1,DF=AC;又∵AB+BC+AC=8,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=1.故选:B.【点睛】此题主要考查平移的性质,解题的关键是熟知平移的特点及周长的定义.5、C【分析】根据轴对称图形及对称轴的定义,结合所给图形即可作出判断.【详解】A、等边三角形有3条对称轴,故本选项错误;B、平行四边形无对称轴,故本选项错误;C、矩形有2条对称轴,故本选项正确;D、正方形有4条对称轴,故本选项错误,故选C.【点睛】本题考查了轴对称图形及对称轴的定义,常见的轴对称图形有:等腰三角形,矩形,正方形,等腰梯形,圆等等.6、D【解析】试题分析:根据题意知,BC边为公共边.A.由“SSS”可以判定△ABC≌△DCB,故本选项错误;B.由“SAS”可以判定△ABC≌△DCB,故本选项错误;C.由BO=CO可以推知∠ACB=∠DBC,则由“AAS”可以判定△ABC≌△DCB,故本选项错误;D.由“SSA”不能判定△ABC≌△DCB,故本选项正确.故选D.考点:全等三角形的判定.7、B【分析】根据精确度的定义即可得出答案.【详解】精确到千分位的近似数是0.005,故答案选择B.【点睛】本题考查的是近似数,属于基础题型,需要熟练掌握相关基础知识.8、B【解析】根据分母不为零分式有意义,可得答案.【详解】A、x=0时分式无意义,故A错误;B、无论x取何值,分式总有意义,故B正确;C、当x=-1时,分式无意义,故C错误;D、当x=0时,分式无意义,故D错误;故选B.【点睛】本题考查了分式有意义的条件,分母不为零分式有意义.9、B【解析】根据完全平方公式和平方差公式进行分析对照可得出结论.【详解】A.(2x﹣3)2=4x2+12x+9,故本选项不能选;B.(4x+1)2=16x2+8x+1,故本选项能选;C.(a+b)(a+b)=a2+2ab+b2,故本选项不能选;D.(2m+3)(2m﹣3)=4m2﹣9,故本选项不能选.故选B【点睛】本题考核知识点:整式乘法公式.解题关键点:熟记完全平方公式和平方差公式.10、C【解析】判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.【详解】解:A、62+82=102,三边是正整数,能构成直角三角形,故是勾股数,此选项错误;B、92+402=412,三边是正整数,能构成直角三角形,故是勾股数,此选项错误;

C、82+122≠152,不是勾股数,此选项正确;

D、(5k)2+(12k)2=(13k)2,三边是正整数,能构成直角三角形,故是勾股数,此选项错误.

故选:C.【点睛】此题主要考查了勾股数,解答此题要用到勾股数的定义,及勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.二、填空题(每小题3分,共24分)11、1【分析】根据方程组的解满足方程组,把解代入,可得关于m、n的二元一次方程组,求解该方程组即可得答案.【详解】把代入,得,求解关于m、n的方程组可得:,故.故答案为:1.【点睛】本题考查二元一次方程组,求解时常用代入消元法或加减消元法,其次注意计算仔细即可.12、【分析】分式方程去分母转化为整式方程,由分式方程有增根求出x的值,代入整式方程计算即可求出a的值.【详解】解:去分母得:x+a=2x﹣6,解得:x=a+6,由分式方程有增根,得到x﹣3=0,即x=3,代入整式方程得:a+6=3,解得:a=﹣3,故答案为:﹣3【点睛】考核知识点:分式方程增根问题.去分母是关键.13、或或【分析】根据全等三角形的判定和性质,结合已知的点画出图形,即可得出答案【详解】解:如图所示∵,∴OB=4,OA=2∵△BOC≌△ABO∴OB=OB=4,OA=OC=2∴故答案为:或或【点睛】本题考查坐标与全等三角形的性质和判定,注意要分多种情况讨论是解题的关键14、1.【解析】可设菱形ABCD的边长为x,则AC=32﹣2x,根据菱形可得AO=16﹣x,BO=8,根据勾股定理可求x,进一步得到AC,再根据菱形的面积公式即可求解.【详解】解:如图,设菱形ABCD的边长为x,则AC=32﹣2x,AO=16﹣x,BO=8,依题意有(16﹣x)2+82=x2,解得x=10,AC=32﹣2x=12,则菱形ABCD的面积为16×12÷2=1.故答案为1.【点睛】本题考查了菱形的性质、勾股定理,解答本题的关键掌握菱形四条边都相等,对角线互相垂直且平分的性质.15、【分析】从已知条件结合图形认真思考,通过构造全等三角形,利用三角形的三边的关系确定线段和的最小值.【详解】如图,在AC上截取AE=AN,连接BE∵∠BAC的平分线交BC于点D,∴∠EAM=∠NAM,∵AM=AM∴△AME≌△AMN(SAS),∴ME=MN.∴BM+MN=BM+ME≥BE.∵BM+MN有最小值.当BE是点B到直线AC的距离时,BE⊥AC,又AB=4,∠BAC=45°,此时,△ABE为等腰直角三角形,∴BE=,即BE取最小值为,∴BM+MN的最小值是.【点睛】解此题是受角平分线启发,能够通过构造全等三角形,把BM+MN进行转化,但是转化后没有办法把两个线段的和的最小值转化为点到直线的距离而导致错误.16、m≥-8且m≠-6【分析】首先求出关于x的方程的解,然后根据解不小于1列出不等式,即可求出.【详解】解:解关于x的方程得x=m+9因为的方程的解不小于,且x≠3所以m+9≥1且m+9≠3解得m≥-8且m≠-6.故答案为:m≥-8且m≠-6【点睛】此题主要考查了分式方程的解,是一个方程与不等式的综合题目,重点注意分式方程存在的意义分母不为零.17、1【分析】根据=3m+9n求出m-n=3,再根据完全平方公式即可求解.【详解】∵=3m+9n=3(m+3n)又∴m-n=3∴(m-n)2+2mn=9+10=1故答案为:1.【点睛】此题主要考查因式分解的应用,解题的关键是因式分解的方法及完全平方公式的应用.18、(2,−1).【解析】根据点P在第四象限可知其横坐标为正,纵坐标为负即可确定P点坐标.【详解】∵点P在第四象限,∴其横、纵坐标分别为正数、负数,又∵点P到x轴的距离为1,到y轴的距离为2,∴点P的横坐标为2,纵坐标为−1.故点P的坐标为(2,−1).故答案为:(2,−1).【点睛】此题考查点的坐标,解题关键在于掌握第四象限内点的坐标特征.三、解答题(共66分)19、(1)120,图详见解析;(2)108【分析】(1)根据“不合格”等级的人数和所占百分比即可得出总数;然后根据“优秀”等级所占百分比即可得出其人数,补全条形图即可;(2)首先求出“一般”等级所占百分比,然后即可得出其所在扇形的圆心角.【详解】(1)(人)“优秀”等级的人数为:(人)补全条形统计图如下:(2)由扇形图知,“一般”等级所占的百分比为∴扇形的圆心角的度数为.【点睛】此题主要考查条形图和扇形图相关联的知识,熟练掌握,即可解题.20、(1)证明见解析;(2)△ADE是等腰三角形.理由见解析【分析】(1)根据全等三角形的判定定理SAS可证△ABD≌△ACE;(2)利用(1)中的全等三角形的对应边相等判定AD=AE,可得△ADE是等腰三角形.【详解】解:(1)∵△ABC是等边三角形,∴AB=AC,在△ABD与△ACE中,,∴△ABD≌△ACE(SAS);(2)△ADE是等腰三角形.理由:由(1)知△ABD≌△ACE,∴AD=AE,∴△ADE是等腰三角形.【点睛】本题考查了全等三角形的判定与性质、等腰三角形的判定以及等边三角形的性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.21、(1)A(0,5)、B(5,0);(2);(3).【分析】(1)先根据非负数的性质求出a、b的值,进而可得结果;(2)先根据余角的性质证得∠DAO=∠CBD,进而可根据ASA证明△ADO≌△BEO,可得,进一步即可得出d和m的关系式;(3)过点作于,交CB延长线于点,根据四边形的内角和和平角的定义易得,从而可根据AAS证明△OAM≌△OBN,可得,可得CO是直角∠ACB的平分线,进一步即可推出,过点作于,由等腰直角三角形的性质可得,进而可得,然后即可根据SAS证明△AOF≌△OBK,可得,然后再利用等腰直角三角形的性质和角平分线的性质得出BC和AC的关系,进而可得结果.【详解】解:(1)∵,,,∴A(0,5)、B(5,0);(2)如图2,,,,,∴∠DAO=∠CBD,∵AO=BO=5,∠DOA=∠EOB=90°,∴△ADO≌△BEO(ASA),,;(3)过点作于,交CB延长线于点,如图4,,∵四边形的内角和为,,,,,,∴△OAM≌△OBN(AAS),,,,,,过点作于,,,,,,,,∴△AOF≌△OBK(SAS),,,过点作于,,,.【点睛】本题以平面直角坐标系为载体,主要考查了非负数的性质、全等三角形的判定和性质、角平分线的判定和性质、等腰直角三角形的判定和性质等知识,综合性强、难度较大,属于试卷的压轴题,正确添加辅助线、灵活应用全等三角形和等腰直角三角形的判定和性质是解题的关键.22、(1)∠1与∠B相等,理由见解析;(2)若BC=BD,AB与FB相等,理由见解析【分析】(1)∠ACB=90°,∠1+∠F=90°,又由于DF⊥AB,∠B+∠F=90°,继而可得出∠1=∠B;

(2)通过判定△ABC≌△FBD(AAS),可得出AB=FB.【详解】解:(1)∠1与∠B相等,理由:∵,△ABC中,∠ACB=90°,∴∠1+∠F=90°,∵FD⊥AB,∴∠B+∠F=90°,∴∠1=∠B;(2)若BC=BD,AB与FB相等,理由:∵△ABC中,∠ACB=90°,DF⊥AB,∴∠ACB=∠FDB=90°,在△ACB和△FDB中,,∴△ACB≌△FDB(AAS),∴AB=FB.【点睛】本题考查全等三角形的判定(AAS)与性质、三角形内角和,解题的关键是掌握全等三角形的判定(AAS)与性质、三角形内角和.23、x2﹣1;x3﹣1;x4﹣1;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论