版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:,,,,,,分别对应下列六个字:海、爱、我、美、游、北,现将因式分解,结果呈现的密码信息可能是()A.我爱游 B.北海游 C.我爱北海 D.美我北海2.△ABC的三边长分别a、b、c,且a+2ab=c+2bc,△ABC是()A.等腰三角形 B.等边三角形C.直角三角形 D.等腰直角三角形3.已知xm=6,xn=3,则x2m―n的值为(
)A.9 B. C.12 D.4.已知点P(a,3+a)在第二象限,则a的取值范围是()A.a<0 B.a>﹣3 C.﹣3<a<0 D.a<﹣35.在(每两个1之间的0依次增加1个)中,无理数有()A.2个 B.3个 C.4个 D.5个6.直线沿轴向下平移个单位后,图象与轴的交点坐标是()A. B. C. D.7.若是一个完全平方式,则k的值为()A. B.18 C. D.8.在下列所示的四个图形中,属于轴对称图案的有()A. B. C. D.9.如图,正方形卡片A类,B类和长方形卡片C类若干张,如果要拼一个长为(a+2b),宽为(a+b)的大长方形,则需要C类卡片张.()A.2 B.3 C.4 D.610.如图,在中,,以顶点为圆心,适当长为半径画弧,分别交,于点、,再分别以点、为圆心,大于的长为半径画弧,两弧交于点,作射线交于点,若,,则的面积是()A.10 B.15 C.20 D.30二、填空题(每小题3分,共24分)11.如图,在平面直角坐标系中,的三个顶点分别是A(-3,2),B(0,4),C(0.2),在x轴上有一点P,使得PA+PB的值最小,则点P的坐标为______________12.计算(10xy2﹣15x2y)÷5xy的结果是_____.13.已知,.当____时,.14.如图,在△ABC中,∠BAC=90°.AD⊥BC于点D,若∠C=30°,BD=1,则线段CD的长为_____.15.已知点A(2,a)与点B(b,4)关于x轴对称,则a+b=_____.16.计算=.17.分式有意义时,x的取值范围是_____.18.如图所示,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,正方形A,B,C的面积分别是8cm1,10cm1,14cm1,则正方形D的面积是__________cm1.三、解答题(共66分)19.(10分)如图,正方形是由两个小正方形和两个小长方形组成的,根据图形解答下列问题:(1)请用两种不同的方法表示正方形的面积,并写成一个等式;(2)运用(1)中的等式,解决以下问题:①已知,,求的值;②已知,,求的值.20.(6分)先化简,再求值:(x+2)(x-2)+x(4-x),其中x=.21.(6分)如图,已知A(-1,2),B(-3,1),C(-4,3).(1)作△ABC关于x轴的对称图形△A1B1C1,写出点C关于x轴的对称点C1的坐标;(2)作△ABC关于直线l1:y=-2(直线l1上各点的纵坐标都为-2)的对称图形△A2B2C2,写出点C关于直线l1的对称点C2的坐标.(3)作△ABC关于直线l2:x=1(直线l2上各点的横坐标都为1)的对称图形△A3B3C3,写出点C关于直线l2的对称点C3的坐标.(4)点P(m,n)为坐标平面内任意一点,直接写出:点P关于直线x=a(直线上各点的横坐标都为a)的对称点P1的坐标;点P关于直线y=b(直线上各点的纵坐标都为b)的对称点P2的坐标.22.(8分)(1)分解因式:;(2)用简便方法计算:.23.(8分)已知,请化简后在–4≤x≤4范围内选一个你喜欢的整数值求出对应值.24.(8分)我们在学习了完全平方公式后,对于一些特殊数量关系的式子应该学会变形.如m2+2mn+2n2﹣6n+9=0;→m2+2mn+n2+n2﹣6n+9=0;→(m+n)2+(n﹣3)2=0,就会很容易得到m、n.已知:a,b,c是△ABC的三边长,满足a2+b2=10a+8b﹣41,且c是△ABC中最长的边,求c的取值范围.25.(10分)如图①,将一个长方形沿着对角线剪开即可得到两个全等的三角形,再把△ABC沿着AC方向平移,得到图②中的△GBH,BG交AC于点E,GH交CD于点F.在图②中,除△ACD与△HGB全等外,你还可以指出哪几对全等的三角形(不能添加辅助线和字母)?请选择其中一对加以证明.26.(10分)求下列各式中的x:(1)(x﹣1)2=25(2)x3+4=
参考答案一、选择题(每小题3分,共30分)1、C【解析】原式提取公因式,再利用平方差公式分解,确定出密码信息即可.【详解】原式=2(x+y)(x−y)(a−b),则呈现的密码信息可能是我爱北海,故选C【点睛】此题考查提公因式法与公式法的综合运用,因式分解的应用,解题关键在于掌握运算法则.2、A【详解】∵a+2ab=c+2bc,∴(a-c)(1+2b)=0,∴a=c,b=(舍去),∴△ABC是等腰三角形.故答案选A.3、C【解析】试题解析:试题解析:∵xm=6,xn=3,∴x2m-n==36÷3=12.故选C.4、C【分析】根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组求解即可.【详解】解:∵点P(a,3+a)在第二象限,∴,解得﹣3<a<1.故选:C.【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).5、B【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】3.14、0、属于有理数;无理数有:,,2.010010001…(每两个1之间的0依次增加1个)共3个.故选:B.【点睛】本题考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.6、D【分析】利用一次函数平移规律,上加下减进而得出平移后函数解析式,再求出图象与坐标轴交点即可.【详解】直线沿轴向下平移个单位则平移后直线解析式为:当y=0时,则x=2,故平移后直线与x轴的交点坐标为:(2,0).故选:D.【点睛】此题主要考查了一次函数平移变换,熟练掌握一次函数平移规律是解题关键.7、C【分析】根据完全平方公式形式,这里首末两项是和9这两个数的平方,那么中间一项为加上或减去和9乘积的2倍.【详解】解:是一个完全平方式,首末两项是和9这两个数的平方,,解得.故选:C.【点睛】本题是完全平方公式的应用,两数平方和再加上或减去它们乘积的2倍,是完全平方式的主要结构特征,本题要熟记完全平方公式,注意积得2倍的符号,有正负两种情况,避免漏解.8、D【分析】根据轴对称图形的定义:经过某条直线(对称轴)对折后,图形完全重叠,来判断各个选项可得.【详解】轴对称图形是经过某条直线(对称轴)对折后,图形完全重叠满足条件的只有D故选:D【点睛】本题考查轴对称的判定,注意区分轴对称图形和中心对称图形的区别.9、B【分析】拼成的大长方形的面积是(a+1b)(a+b)=a1+3ab+1b1,即需要一个边长为a的正方形,1个边长为b的正方形和3个C类卡片的面积是3ab.【详解】(a+1b)(a+b)=a1+3ab+1b1.则需要C类卡片3张.故选:B.【点睛】本题考查了多项式乘多项式的运算,需要熟练掌握运算法则并灵活运用,利用各个面积之和等于总的面积也比较关键.10、B【解析】作DE⊥BC于E,根据角平分线的性质得到DE=AD=3,根据三角形的面积公式计算即可.【详解】解:作DE⊥BC于E,由基本作图可知,BP平分∠ABC,
∵AP平分∠ABC,∠A=90°,DE⊥BC,
∴DE=AD=3,
∴△BDC的面积,
故选:B.【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.二、填空题(每小题3分,共24分)11、(-2,0)【分析】作点B关于x轴的对称点D,连接AD,则AD与x轴交点即为点P位置,利用待定系数法求出AD解析式,再求出点P坐标即可.【详解】解:作点B关于x轴的对称点D,则点D坐标为(0,-4),连接AD,则AD与x轴交点即为点P位置.设直线AD解析式为y=kx+b(k≠0),∵点A、D的坐标分别为(-3,2),(0,-4),∴解得∴直线AD解析式为y=-2x-4,把y=0代入y=-2x-4,解得x=-2,∴点P的坐标为(-2,0).【点睛】本题考查了将军饮马问题,根据题意作出点B关于x轴对称点D,确定点P位置是解题关键.12、2y﹣3x【分析】多项式除以单项式,多项式的每一项除以该单项式,然后运用同底数幂相除,底数不变,指数相减可得.【详解】解:(10xy2﹣15x2y)÷5xy=2y﹣3x.故答案为:2y﹣3x.【点睛】掌握整式的除法为本题的关键.13、【分析】由得到关于x的一元二次方程,求解方程即可得到x的值.【详解】当时,则有:解得故当时,.故答案为:.【点睛】本题主要考查了解一元二次方程,由得到一元二次方程是解决本题的关键.14、1【分析】求出∠BAD=∠BAC﹣∠DAC=10°,求出AB=2,求出BC=4,则CD可求出.【详解】∵AD⊥BC于点D,∠C=10°,∴∠DAC=60°,∵∠BAC=90°,∴∠BAD=∠BAC﹣∠DAC=10°,∴在Rt△ABD中,AB=2BD=2,∴Rt△ABC中,∠C=10°,∴BC=2AB=4,∴CD=BC﹣BD=4﹣1=1.故答案为:1.【点睛】此题主要考查直角三角形的性质与证明,解题的关键是熟知含10°的直角三角形的性质.15、-1【分析】直接利用关于x轴对称点的性质得出a,b的值,进而得出答案.【详解】∵点A(1,a)与点B(b,4)关于x轴对称,∴b=1,a=−4,则a+b=−4+1=−1,故答案为:−1.【点睛】此题主要考查了关于x轴对称点的性质,正确把握横纵坐标的关系是解题关键.16、.【解析】化简第一个二次根式,计算后边的两个二次根式的积,然后合并同类二次根式即可求解:.17、x>1.【解析】试题解析:根据题意得:解得:故答案为点睛:二次根式有意义的条件:被开方数大于等于零.分式有意义的条件:分母不为零.18、17【解析】试题解析:根据勾股定理可知,∵S正方形1+S正方形1=S大正方形=2,S正方形C+S正方形D=S正方形1,S正方形A+S正方形B=S正方形1,∴S大正方形=S正方形C+S正方形D+S正方形A+S正方形B=2.∴正方形D的面积=2-8-10-14=17(cm1).三、解答题(共66分)19、(1)正方形的面积可表示为:或;等式:;(2)①;②103.【分析】(1)用正方形的面积公式直接求出正方形的面积;利用四个矩形的面积之和求出正方形的面积,即可得到一个等式;(2)①根据(1)中的等式进行直接求解即可;②令a=x-y,对等式进行变形后,利用(1)中的等式进行求解.【详解】(1)正方形ABCD的面积可表示为:或等式:(2)①∵,,由(1)得:∴∴②令a=x-y,则a+z=11,az=9∴原式可变形为:【点睛】本题考查的是完全平方公式的几何意义,能根据(1)中求出的等式对完全平方公式进行变形是关键.20、-3.【解析】根据平方差公式和单项式乘以多项式,然后再合并同类项即可对题目中的式子化简,然后将x=代入化简后的式子,即可求得原式的值.【详解】解:原式=x2-4+4x-x2=4x-4.当x=时,原式=4×-4=-3.故答案为:-3.【点睛】本题考查整式的混合运算—化简求值.21、(1)图见解析;C1的坐标为(-4,-3);(2)图见解析;C2的坐标为(-4,-7);(3)图见解析;C3的坐标为(6,3);(4)点P1的坐标为(2a-m,n);P2的坐标为(m,2b-n)【分析】(1)根据x轴为对称轴,利用轴对称的性质,即可得到△ABC关于x轴的对称图形△A1B1C1,进而得到点C关于x轴的对称点C1的坐标;(2)根据直线1:y=-2为对称轴,利用轴对称的性质,即可得到△ABC关于直线1:y=-2的对称图形△A2B2C2,进而得到点C关于直线l1的对称点C2的坐标.(3)根据直线l2:x=1为对称轴,利用轴对称的性质,即可得到△ABC关于直线l2:x=1的对称图形△A3B3C3,进而得到点C关于直线l2的对称点C3的坐标.(4)根据对称点到对称轴的距离相等,即可得到点P关于直线x=a的对称点P1的坐标;以及点P关于直线y=b的对称点P2的坐标.【详解】(1)如图所示,△A1B1C1即为所求,C1的坐标为(-4,-3);(2)如图所示,△A2B2C2即为所求,C2的坐标为(-4,-7);(3)如图所示,△A3B3C3即为所求,C3的坐标为(6,3);(4)点P(m,n)关于直线x=a的对称点P1的坐标为(2a-m,n);点P(m,n)关于直线y=b的对称点P2的坐标为(m,2b-n).【点睛】本题主要考查了利用轴对称变换进行作图以及轴对称性质的运用,几何图形都可看做是由点组成,画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的,连接这些对称点,就得到原图形的轴对称图形.22、(1);(2)1.【分析】(1)先用完全平方公式展开,整理后再用完全平方公式进行因式分解即可;(2)把化成的形式,再运用平方差公式计算即可.【详解】(1)===;(2)===1.【点睛】此题主要考查了因式分解-公式法以及平方差公式的应用,熟练掌握因式分解的方法是解本题的关键.23、;当x=1时,原式=1.【分析】先计算括号内的部分,再将除法转化为乘法,得出结果,再【详解】解:原式====,∵–4≤x≤4且为整数,∴x=±4,±3,±2,±1,0,又根据题目和计算过程中x≠0,2,4,当x=1时,原式=1.【点睛】本题考查了分式的化简求值,解题的关键是掌握分式化简的运算法则,同时注意x不能取的值.24、5≤c<1.【分析】根据a2+b2=10a+8b﹣41,可以求得a、b的值,由a,b,c为正整数且是△ABC的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025六枝特区公共汽车运输公司招聘16人参考考试题库及答案解析
- 建材代理协议合同
- 废弃油脂协议书
- 建厂邻里协议书
- 建房班组长协议书
- 业主签字协议书
- 希腊签证协议书
- 小学走读协议书
- 小吃教学协议书
- 询价服务协议书
- 2025西部机场集团航空物流有限公司招聘考试笔试参考题库及答案解析
- 2025年及未来5年市场数据中国LPG加气站行业市场全景调研及投资规划建议报告
- 沥青混凝土运输安全管理实施方案
- 卫生院对村卫生室基本公卫资金分配方案
- 内科常见疾病护理要点详解
- 工程接管合同协议书
- H2受体拮抗剂:临床定位与合理应用
- 医院培训课件:《基层高血压管理指南-高血压药物治疗方案》
- 2025年秋人教PEP版(2024)小学英语三年级上册期末检测试卷及答案
- 哈希nitratax sc硝氮分析仪操作手册
- 医院信息系统操作权限分级管理制度
评论
0/150
提交评论