2023届甘肃省天水市重点中学数学八年级上册期末教学质量检测模拟试题含解析_第1页
2023届甘肃省天水市重点中学数学八年级上册期末教学质量检测模拟试题含解析_第2页
2023届甘肃省天水市重点中学数学八年级上册期末教学质量检测模拟试题含解析_第3页
2023届甘肃省天水市重点中学数学八年级上册期末教学质量检测模拟试题含解析_第4页
2023届甘肃省天水市重点中学数学八年级上册期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.对于实数a、b定义一种运算“※”,规定a※b=,如1※3=,则方程※(﹣2)=的解是()A. B. C. D.2.如图,,点在线段上,点在线段上,,,则的长度为()A. B. C. D.无法确定3.如图,在等腰ABC中,AB=AC,∠BAC=50°,∠BAC的平分线与AB的垂直平分线交于点O、点C沿EF折叠后与点O重合,则∠CEF的度数是()A.60° B.55° C.50° D.45°4.下列美丽的图案中,不是轴对称图形的是()A. B. C. D.5.已知+c2﹣6c+9=0,则以a,c为边的等腰三角形的周长是()A.8 B.7 C.8或7 D.136.如图,在△ABC和△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,C,D,E三点在同一条直线上,连接BD,则下列结论错误的是()A.△ABD≌△ACE B.∠ACE+∠DBC=45°C.BD⊥CE D.∠BAE+∠CAD=200°7.若(x+a)(x+b)的积中不含x的一次项,那么a与b一定是()A.互为相反数 B.互为倒数 C.相等 D.a比b大8.如图,数轴上的点表示的数是-1,点表示的数是1,于点,且,以点为圆心,为半径画弧交数轴于点,则点表示的数为()A. B. C.2.8 D.9.眉山市某初级中学连续多年开设第二兴趣班.经测算,前年参加的学生中,参加艺术类兴趣班的学生占,参加体育类的学生占,参加益智类的学生占;去年参加的学生中,参加艺术类兴趣班的学生占,参加体育类的学生占,参加益智类的学生占(如图).下列说法正确的是()A.前年参加艺术类的学生比去年的多 B.去年参加体育类的学生比前年的多C.去年参加益智类的学生比前年的多 D.不能确定参加艺术类的学生哪年多10.四边形ABCD中,若∠A+∠C=180°且∠B:∠C:∠D=3:5:6,则∠A为().A.80° B.70° C.60° D.50°二、填空题(每小题3分,共24分)11.如图,在中,,,,分别以点,为圆心,大于的长为半径画弧,两弧交点分别为点,,过,两点作直线交于点,则的长是_______.12.如图,在正方形网格中,△ABC的每一个顶点都在格点上,AB=5,点D是AB边上的动点(点D不与点A,B重合),将线段AD沿直线AC翻折后得到对应线段AD1,将线段BD沿直线BC翻折后得到对应线段BD2,连接D1D2,则四边形D1ABD2的面积的最小值是____.13.在平面直角坐标系xOy中,O为坐标原点,A是反比例函数图象上的一点,AB垂直y轴,垂足为点B,那么的面积为___________.14.如图是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的,,,将四个直角三角形中边长为3的直角边分别向外延长一倍,得到图2所示的“数学风车”,则这个风车的外围周长(图中实线部分)是__________.15.若,,且,则__________.16.多项式1+9x2加上一个单项式后,使它能成为一个整式的完全平方式,那么加上的单项式可以是_____(填上一个你认为正确的即可).17.若分式的值为0,则x=_____.18.约分:______.三、解答题(共66分)19.(10分)某开发公司生产的960件新产品需要精加工后,才能投放市场,现甲、乙两个工厂都想加工这批产品,已知甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用20天,而甲工厂每天加工的数量是乙工厂每天加工的数量的,公司需付甲工厂加工费用为每天80元,乙工厂加工费用为每天120元.(1)甲、乙两个工厂每天各能加工多少件新产品?(2)公司制定产品加工方案如下:可以由每个厂家单独完成,也可以由两个厂家合作完成.在加工过程中,公司派一名工程师每天到厂进行技术指导,并负担每天15元的午餐补助费,请你帮公司选择一种既省时又省钱的加工方案,并说明理由.20.(6分)如图,直线l₁:y=x+2与直线l₂:y=kx+b相交于点P(1,m)(1)写出k、b满足的关系;(2)如果直线l₂:y=kx+b与两坐标轴围成一等腰直角三角形,试求直线l₂的函数表达式;(3)在(2)的条件下,设直线l₂与x轴相交于点A,点Q是x轴上一动点,求当△APQ是等腰三角形时的Q点的坐标.21.(6分)已知:如图,9×9的网格中(每个小正方形的边长为1)有一个格点△ABC.(1)利用网格线,画∠CAB的角平分线AQ,交BC于点Q,画BC的垂直平分线,交射线AQ于点D;(2)连接CD、BD,则∠CDB=°.22.(8分)如图所示,在△ABC中,已知AB=AC,∠BAC=120°,AD⊥AC,DC=6求BD的长.23.(8分)如图,在Rt△ABC中,∠B=90°.作出,∠BAC的平分线AM;要求:尺规作图,保留作图痕迹,不写作法若∠BAC的平分线AM与BC交于点D,且D=3,AC=10,则DAC的面积为______.24.(8分)已知:一次函数的图象经过两点.求该一次函数表达式.25.(10分)先化简,再求值:1-÷,其中x=-2.26.(10分)如图,在△ABC中,∠ACB=90°,点E,F在边AB上,将边AC沿CE翻折,使点A落在AB上的点D处,再将边BC沿CF翻折,使点B落在CD的延长线上的点B'处.(1)求∠ECF的度数;(2)若CE=4,B'F=1,求线段BC的长和△ABC的面积.

参考答案一、选择题(每小题3分,共30分)1、C【分析】根据定义新运算公式列出分式方程,然后解分式方程即可.【详解】解:∵※(﹣2)=∴解得:x=6经检验:x=6是原方程的解故选C.【点睛】此题考查的是定义新运算和解分式方程,掌握定义新运算公式和解分式方程的一般步骤是解决此题的关键.2、C【解析】根据题意利用全等三角形的性质进行分析,求出的长度即可.【详解】解:∵,∴∵,,∴.故选:C.【点睛】本题考查全等三角形的性质,熟练掌握并利用全等三角形的性质进行等量代换是解题的关键.3、C【分析】连接OB,OC,先求出∠BAO=25°,进而求出∠OBC=40°,求出∠COE=∠OCB=40°,最后根据等腰三角形的性质,问题即可解决.【详解】如图,连接OB,∵∠BAC=50°,AO为∠BAC的平分线,∴∠BAO=∠BAC=12×50°=25°.又∵AB=AC,∴∠ABC=∠ACB=65°.∵DO是AB的垂直平分线,∴OA=OB,∴∠ABO=∠BAO=25°,∴∠OBC=∠ABC−∠ABO=65°−25°=40°.∵AO为∠BAC的平分线,AB=AC,∴直线AO垂直平分BC,∴OB=OC,∴∠OCB=∠OBC=40°,∵将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,∴OE=CE.∴∠COE=∠OCB=40°;

在△OCE中,∠OEC=180°−∠COE−∠OCB=180°−40°−40°=100°∴∠CEF=∠CEO=50°.故选C.【点睛】本题考查了等腰三角形的性质的运用、垂直平分线性质的运用、折叠的性质,解答时运用等腰三角形的性质和垂直平分线的性质是解答的关键.4、A【解析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选A.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5、C【分析】根据非负数的性质列式求出a、c的值,再分a是腰长与底边两种情况讨论求解.【详解】解:可化为:,∵,,∴,,解得a=2,c=3,①a=2是腰长时,三角形的三边分别为2、2、3,∵2+2=4>3,∴2、2、3能组成三角形,∴三角形的周长为7,②a=2是底边时,三角形的三边分别为2、3、3,能够组成三角形,∴三角形的周长为1;综上所述,三角形的周长为7或1.故选:C.【点睛】本题考查了非负数的性质和等腰三角形的性质,解题的关键是分情况讨论并利用三角形的三边关系进行判断.6、D【分析】根据SAS即可证明△ABD≌△ACE,再利用全等三角形的性质以及等腰直角三角形的性质即可一一判断.【详解】∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE.在△BAD和△CAE中,∵,∴△BAD≌△CAE(SAS),∴BD=CE,故A正确;∵△ABC为等腰直角三角形,∴∠ABC=∠ACB=45°,∴∠ABD+∠DBC=45°.∵△BAD≌△CAE,∴∠ABD=∠ACE,∴∠ACE+∠DBC=45°,故B正确.∵∠ABD+∠DBC=45°,∴∠ACE+∠DBC=45°,∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=90°,则BD⊥CE,故C正确.∵∠BAC=∠DAE=90°,∴∠BAE+∠DAC=360°﹣90°﹣90°=180°,故D错误.故选D.【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.7、A【分析】先用多项式乘以多项式的运算法则展开求它们的积,并且把看作常数合并关于的同类项,的一次项系数为0,得出的关系.【详解】∵又∵的积中不含的一次项∴∴与一定是互为相反数故选:A.【点睛】本题考查了多项式乘多项式法则,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.8、A【分析】根据勾股定理求出AC,根据实数与数轴的概念求出点D表示的数.【详解】解:由题意得,AB=1,由勾股定理得,AC=,∴AD=,则OD=−1,即点D表示的数为−1,故选A.【点睛】本题考查的是勾股定理、实数与数轴,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.9、D【分析】在比较各部分的大小时,必须在总体相同的情况下才能比较,所以无法确定参加艺术类的学生哪年多.【详解】解:眉山市某初级中学参加前年和去年的兴趣班的学生总人数不一定相同,所以无法确定参加各类活动的学生哪年多.故选D.【点睛】本题考查了扇形统计图.扇形统计图直接反映部分占总体的百分比大小,但是在比较各部分的大小时,必须在总体相同的情况下才能比较.10、A【解析】试题分析:由∠A+∠C=180°根据四边形的内角和定理可得∠B+∠D=180°,再设∠B=3x°,∠C=5x°,∠D=6x°,先列方程求得x的值,即可求得∠C的度数,从而可以求得结果.∵∠B:∠C:∠D=3:5:6∴设∠B=3x°,∠C=5x°,∠D=6x°∵∠A+∠C=180°∴∠B+∠D=180°∴3x+6x=180,解得x=20∴∠C=100°∴∠A=180°-100°=80°故选A.考点:四边形的内角和定理点评:四边形的内角和定理是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.二、填空题(每小题3分,共24分)11、【分析】连接AD,如图,先利用勾股定理计算出BC=8,利用基本作图得到PQ垂直平分AB,所以DA=DB,设CD=x,则DB=DA=8-x,利用勾股定理得到x2+62=(8-x)2,然后解方程即可.【详解】解:连接AD,如图,

∵∠C=90°,AC=3,AB=5,

∴BC==8,由作法得PQ垂直平分AB,

∴DA=DB,

设CD=x,则DB=DA=8-x,

在Rt△ACD中,x2+62=(8-x)2,解得x=,即CD的长为.故答案为:.【点睛】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质和勾股定理.12、1【分析】延长AC使CE=AC,先证明△BCE是等腰直角三角形,再根据折叠的性质解得S四边形ADCD1+S四边形BDCD2=1,再根据S四边形D1ABD2=S四边形ADCD1+S四边形BDCD2+S△D1CD2,可得要四边形D1ABD2的面积最小,则△D1CD2的面积最小,即:CD最小,此时,CD⊥AB,此时CD最小=1,根据三角形面积公式即可求出四边形D1ABD2的面积的最小值.【详解】如图,延长AC使CE=AC,∵点A,C是格点,∴点E必是格点,∵CE2=12+22=1,BE2=12+22=1,BC2=12+32=10,∴CE2+BE2=BC2,CE=BE,∴△BCE是等腰直角三角形,∴∠BCE=41°,∴∠ACB=131°,由折叠知,∠DCD1=2∠ACD,∠DCD2=2∠BCD,∴∠DCD1+∠DCD2=2(∠ACD+∠BCD)=2∠ACB=270°,∴∠D1CD2=360°﹣(∠DCD1+DCD2)=90°,由折叠知,CD=CD1=CD2,∴△D1CD2是等腰直角三角形,由折叠知,△ACD≌△ACD1,△BCD≌△BCD2,∴S△ACD=S△ACD1,S△BCD=S△BCD2,∴S四边形ADCD1=2S△ACD,S四边形BDCD2=2S△BCD,∴S四边形ADCD1+S四边形BDCD2=2S△ACD+2S△BCD=2(S△ACD+S△BCD)=2S△ABC=1,∴S四边形D1ABD2=S四边形ADCD1+S四边形BDCD2+S△D1CD2,∴要四边形D1ABD2的面积最小,则△D1CD2的面积最小,即:CD最小,此时,CD⊥AB,此时CD最小=1,∴S△D1CD2最小=CD1•CD2=CD2=,即:四边形D1ABD2的面积最小为1+=1.1,故答案为1.1.【点睛】本题考查了四边形面积的最值问题,掌握等腰直角三角形的性质、折叠的性质、三角形面积公式是解题的关键.13、1【分析】设点A的坐标是,然后根据三角形的面积公式解答即可.【详解】解:设点A的坐标是,∵AB垂直y轴,∴,∴的面积=.故答案为:1.【点睛】本题考查了反比例函数系数k的几何意义,属于基础题型,熟练掌握反比例函数系数k的几何意义是关键.14、【分析】由题意∠ACB为直角,利用勾股定理求得外围中一条边,又由AC延伸一倍,从而求得风车的一个轮子,进一步求得四个.【详解】依题意,设“数学风车”中的四个直角三角形的斜边长为x,则x2=62+22=40所以x=所以“数学风车”的周长是:(+3)×4=.【点睛】本题是勾股定理在实际情况中应用,并注意隐含的已知条件来解答此类题.15、1【分析】根据=3m+9n求出m-n=3,再根据完全平方公式即可求解.【详解】∵=3m+9n=3(m+3n)又∴m-n=3∴(m-n)2+2mn=9+10=1故答案为:1.【点睛】此题主要考查因式分解的应用,解题的关键是因式分解的方法及完全平方公式的应用.16、6x或﹣6x或x2或﹣1或﹣9x1.【分析】分9x1是平方项与乘积二倍项,以及单项式的平方三种情况,根据完全平方公式讨论求解.【详解】解:①当9x1是平方项时,1±6x+9x1=(1±3x)1,∴可添加的项是6x或﹣6x,②当9x1是乘积二倍项时,1+9x1+x2=(1+x1)1,∴可添加的项是x2.③添加﹣1或﹣9x1.故答案为:6x或﹣6x或x2或﹣1或﹣9x1.【点睛】本题考查了完全平方式,解题过程中注意分类讨论,熟练掌握完全平方式的结构特征是解题的关键.17、-1【分析】根据分式值为零的条件计算即可;【详解】解:由分式的值为零的条件得x+1=0,x﹣2≠0,即x=﹣1且x≠2故答案为:﹣1.【点睛】本题主要考查了分式值为零的条件,准确计算是解题的关键.18、【分析】根据分式的基本性质,找到分子分母的公因式,然后进行约分即可.【详解】=.故答案为.【点睛】此题主要考查了分式的约分,确定并找到分子分母的公因式是解题关键.三、解答题(共66分)19、(1)甲工厂每天加工16件产品,乙工厂每天加工24件产品.(2)甲、乙两工厂合作完成此项任务既省时又省钱.见解析.【解析】(1)设甲工厂每天加工x件新品,乙工厂每天加工1.5x件新品,根据题意找出等量关系:甲厂单独加工这批产品所需天数﹣乙工厂单独加工完这批产品所需天数=20,由等量关系列出方程求解.(2)分别计算出甲单独加工完成、乙单独加工完成、甲、乙合作完成需要的时间和费用,比较大小,选择既省时又省钱的加工方案即可.【详解】(1)设甲工厂每天加工x件新品,乙工厂每天加工1.5x件新品,则:解得:x=16经检验,x=16是原分式方程的解∴甲工厂每天加工16件产品,乙工厂每天加工24件产品(2)方案一:甲工厂单独完成此项任务,则需要的时间为:960÷16=60天需要的总费用为:60×(80+15)=5700元方案二:乙工厂单独完成此项任务,则需要的时间为:960÷24=40天需要的总费用为:40×(120+15)=5400元方案三:甲、乙两工厂合作完成此项任务,设共需要a天完成任务,则16a+24a=960∴a=24∴需要的总费用为:24×(80+120+15)=5160元综上所述:甲、乙两工厂合作完成此项任务既省时又省钱.【点睛】本题主要考查分式方程的应用,解题的关键在于理解清楚题意,找出等量关系,列出方程求解.需要注意:①分式方程求解后,应注意检验其结果是否符合题意;②选择最优方案时,需将求各个方案所需时间和所需费用,经过比较后选择最优的那个方案.20、(1)k+b=3;(2)y=﹣x+4;(3)点Q的坐标为:(4±3,0)或Q(﹣2,0)或(1,0).【分析】(1)将点P的坐标代入y=x+2并解得m=3,得到点P(1,3);将点P的坐标代入y=kx+b,即可求解;(2)由y=kx+b与两坐标轴围成一等腰直角三角形可求出直线的k值为﹣1,然后代入P点坐标求出b即可;(3)分AP=AQ、AP=PQ、PQ=AQ三种情况,分别求解即可.【详解】解:(1)将点P的坐标代入y=x+2可得:m=1+2=3,故点P(1,3),将点P的坐标代入y=kx+b可得:k+b=3;(2)∵y=kx+b与两坐标轴围成一等腰直角三角形,∴设该直线的函数图象与x轴,y轴分别交于点(a,0),(0,a),其中a>0,将(a,0),(0,a),代入得:ak+b=0,b=a,∴ak+a=0,即a(k+1)=0,∴k=﹣1,即y=﹣x+b,代入P(1,3)得:﹣1+b=3,解得:b=4,∴直线l2的表达式为:y=﹣x+4;(3)设点Q(m,0),而点A、P的坐标分别为:(4,0)、(1,3),∴AP=,当AP=AQ时,则点Q(4±3,0);当AP=PQ时,则点Q(﹣2,0);当PQ=AQ时,即(1﹣m)2+9=(4﹣m)2,解得:m=1,即点Q(1,0);综上,点Q的坐标为:(4±3,0)或Q(﹣2,0)或(1,0).【点睛】此题把一次函数与等腰三角形的性质相结合,考查了同学们综合运用所学知识的能力,是一道综合性较好的题目,其中(3),要注意分类求解,避免遗漏.21、(1)见解析;(2)1【分析】(1)根据网格线的结构特征,直接画出角平分线和垂直平分线,即可;(2)根据勾股定理的逆定理,即可得到答案.【详解】(1)如图所示,射线AQ即为∠BAC的平分线,DE所在直线即为BC的垂直平分线;(2)由网格线的结构特征可得:CD2=12+52=26,BD2=12+52=26,BC2=42+62=52,∴CD2+BD2=BC2,∴△BCD是直角三角形,即:∠BDC=1°,故答案为:1.【点睛】本题主要考查角平分线和垂直平分线的定义以及勾股定理的逆定理,掌握角平分线和垂直平分线的定义以及勾股定理的逆定理是解题的关键.22、1.【详解】试题分析:由题意先求得∠B=∠C=10°,再由AD⊥AC,求得∠ADC=60°,则∠BAD=10°,然后得出AD=BD.∵AB=AC,∠BAC=120°,∴∠B=∠C=10°,∵AD⊥AC,DC=6,∴AD=CD=1,∠ADC=60°.∴∠B=∠BAD=10°.∴AD=BD=1.考点:1.含10度角的直角三角形;2.等腰三角形的判定与性质.23、(1)作图见解析;(2)1.【分析】(1)利用基本作图,作∠BAC的平分线即可

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论