




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图,在△ABC中,AB=AC,AD,BE是△ABC的两条中线,P是AD上的一个动点,则下列线段的长等于CP+EP最小值的是()A.AC B.AD C.BE D.BC2.《九章算术》中有一道“盈不足术”问题,原文为:今有人共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?设该物品的价格是x钱,共同购买该物品的有y人,则根据题意,列出的方程组是(
)A.
B.
C.
D.3.如图,△ABC是等边三角形,AQ=PQ,PR⊥AB于点R,PS⊥AC于点S,PR=PS.下列结论:①点P在∠A的角平分线上;②AS=AR;③QP∥AR;④△BRP≌△QSP.其中,正确的有()A.1个B.2个C.3个D.4个4.如图,在长方形中,点,点分别为和上任意一点,点和点关于对称,是的平分线,若,则的度数是()A. B. C. D.5.如图,在中,,将绕点逆时针旋转,使点落在点处,点落在点处,则两点间的距离为()A. B. C. D.6.在实数,,,,中,无理数有()A.1个 B.2个 C.3个 D.4个7.如图是一段台阶的截面示意图,若要沿铺上地毯(每个调节的宽度和高度均不同),已知图中所有拐角均为直角.须知地毯的长度,至少需要测量()A.2次 B.3次 C.4次 D.6次8.以下是某校九年级10名同学参加学校演讲比赛的统计表:成绩/分80859095人数/人1252则这组数据的中位数和平均数分别为()A.90,90 B.90,89 C.85,89 D.85,909.现有7张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2的方式不重叠地放在矩形ABCD内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足()A.a=2b B.a=3b C.a=3.5b D.a=4b10.如图,在中,,的垂直平分线交于点,交于点,连接,若,则的度数为()A.25° B.30° C.35° D.50°11.如图,,,过作的垂线,交的延长线于,若,则的度数为()A.45° B.30° C.22.5° D.15°12.说明命题“若a2>b2,则a>b.”是假命题,举反例正确的是()A.a=2,b=3 B.a=﹣2,b=3 C.a=3,b=﹣2 D.a=﹣3,b=2二、填空题(每题4分,共24分)13.A(3,y1),B(1,y2)是直线y=kx+3(k>0)上的两点,则y1____y2(填“>”或“<).14.已知等腰三角形的一个内角为40°,则这个等腰三角形的顶角为______.15.如图,已知AB∥CF,E为DF的中点.若AB=13cm,CF=7cm,则BD=_____cm.16.春节期间,重百超市推出了甲、乙、丙、丁四种礼品套餐组合:甲套餐每袋装有15个A礼盒,10个B礼盒,10个C礼盒;乙套餐每袋装有5个A礼盒,7个B礼盒,6个C礼盒;丙套餐每袋装有7个A礼盒,8个B礼盒,9个C礼盒;丁套餐每袋装有3个A礼盒,4个B礼盒,4个C礼盒,若一个甲套餐售价1800元,利润率为,一个乙和一个丙套餐一共成本和为1830元,且一个A礼盒的利润率为,问一个丁套餐的利润率为______利润率17.若n边形的每一个外角都是72°,则边数n为_____.18.中,,,斜边,则AC的长为__________.三、解答题(共78分)19.(8分)如图,点E,F在线段BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于O,求证:OE=OF.20.(8分)请用无刻度的直尺在下列方格中画一条线段将梯形面积平分(画出三种不同的画法).21.(8分)如图,在平面直角坐标系中,已知点A的坐标为(15,0),点B的坐标为(6,12),点C的坐标为(0,6),直线AB交y轴于点D,动点P从点C出发沿着y轴正方向以每秒2个单位的速度运动,同时,动点Q从点A出发沿着射线AB以每秒a个单位的速度运动设运动时间为t秒,(1)求直线AB的解析式和CD的长.(2)当△PQD与△BDC全等时,求a的值.(3)记点P关于直线BC的对称点为,连结当t=3,时,求点Q的坐标.22.(10分)如图,已知四边形各顶点的坐标分别为.(1)请你在坐标系中画出四边形,并画出其关于轴对称的四边形;(2)尺规作图:求作一点,使得,且为等腰三角形.(要求:仅找一个点即可,保留作图痕迹,不写作法)23.(10分)图a是一个长为2m、宽为2n的长方形,沿图中实现用剪刀均分成四块小长方形,然后按图b的形状拼成一个正方形.(1)图b中,大正方形的边长是.阴影部分小正方形的边长是;(2)观察图b,写出(m+n)2,(m﹣n)2,mn之间的一个等量关系,并说明理由.24.(10分)在边长为1的小正方形网格中,△AOB的顶点均在格点上.(1)B点关于y轴的对称点坐标为;(2)将△AOB向左平移3个单位长度得到△A1O1B1,请画出△A1O1B1;(3)在(2)的条件下,A1的坐标为.25.(12分)(1)计算:;(2)先化简,再求值:,其中a=﹣2,b=.26.某茶叶经销商以每千克元的价格购进一批宁波白茶鲜茶叶加工后出售,已知加工过程中质量损耗了,该商户对该茶叶试销期间,销售单价不低于成本单价,且每千克获利不得高于成本单价的,经试销发现,每天的销售量(千克)与销售单价(元/千克)符合一次函数,且时,;时,.(1)求一次函数的表达式.(2)若该商户每天获得利润为元,试求出销售单价的值.
参考答案一、选择题(每题4分,共48分)1、C【分析】如图连接PB,只要证明PB=PC,即可推出PC+PE=PB+PE,由PE+PB≥BE,可得P、B、E共线时,PB+PE的值最小,最小值为BE的长度.【详解】解:如图,连接PB,
∵AB=AC,BD=CD,
∴AD⊥BC,
∴PB=PC,
∴PC+PE=PB+PE,
∵PE+PB≥BE,
∴P、B、E共线时,PB+PE的值最小,最小值为BE的长度,
故选:C.【点睛】本题考查轴对称-最短路线问题,等腰三角形的性质、线段的垂直平分线的性质,解题的关键是灵活运用所学知识解决问题.2、D【分析】设该物品的价格是x钱,共同购买该物品的有y人,由“每人出8钱,则多3钱;每人出7钱,则差4钱”,即可得出关于x,y的二元一次方程组,此题得解.【详解】解:根据题意可知,故答案为:D.【点睛】此题考查由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.3、D【解析】∵△ABC是等边三角形,PR⊥AB,PS⊥AC,且PR=PS,∴P在∠A的平分线上,故①正确;由①可知,PB=PC,∠B=∠C,PS=PR,∴△BPR≌△CPS,∴AS=AR,故②正确;∵AQ=PQ,∴∠PQC=2∠PAC=60°=∠BAC,∴PQ∥AR,故③正确;由③得,△PQC是等边三角形,∴△PQS≌△PCS,又由②可知,④△BRP≌△QSP,故④也正确,∵①②③④都正确,故选D.点睛:本题考查了角平分线的性质与全等三角形的判定与性质,准确识图并熟练掌握全等三角形的判定方法与性质是解题的关键.4、B【分析】根据对称的性质可得∠MEF的度数,再由是的平分线,可算出∠MEN的度数.【详解】解:由题意可得:∠B=90°,∵∠BFE=60°,∴∠BEF=30°,∵点和点关于对称,∴∠BEF=∠MEF=30°,∴∠MEC=180-30°×2=120°,又∵是的平分线,∴∠MEN=120÷2=60°.故选B.【点睛】本题考查了轴对称的性质和角平分线的性质,根据已知角利用三角形内角和、角平分线的性质计算相关角度即可,难度不大.5、B【分析】延长BE和CA交于点F,根据旋转的性质可知∠CAE=,证明∠BAE=∠ABC,即可证得AE∥BC,得出,即可求出BE.【详解】延长BE和CA交于点F∵绕点逆时针旋转得到△AED∴∠CAE=∴∠CAB+∠BAE=又∵∠CAB+∠ABC=∴∠BAE=∠ABC∴AE∥BC∴∴AF=AC=2,FC=4∴BF=∴BE=EF=BF=故选:B【点睛】本题考查了旋转的性质,平行线的判定和性质.6、B【详解】解:在实数,,,,中,其中,,是无理数.故选:B.7、A【分析】根据平移的特点即可到达只需测量AH,HG即可得到地毯的长度.【详解】∵图中所有拐角均为直角∴地毯的长度AB+BC+CD+DE+EF+FG=AH+HG,故只需要测量2次,故选A.【点睛】本题主要运用平移的特征,把台阶的长平移成长方形的长,把台阶的高平移成长方形的宽,然后进行求解.8、B【解析】∵共有10名同学,中位数是第5和6的平均数,∴这组数据的中位数是(90+90)÷2=90;这组数据的平均数是:(80+85×2+90×5+95×2)÷10=89;故选B.9、B【解析】表示出左上角与右下角部分的面积,求出之差,根据差与BC无关即可求出a与b的关系式.【详解】解:法1:左上角阴影部分的长为AE,宽为AF=3b,右下角阴影部分的长为PC,宽为a,∵AD=BC,即AE+ED=AE+a,BC=BP+PC=4b+PC,∴AE+a=4b+PC,即AE﹣PC=4b﹣a,∴阴影部分面积之差S=AE•AF﹣PC•CG=3bAE﹣aPC=3b(PC+4b﹣a)﹣aPC=(3b﹣a)PC+12b2﹣3ab,则3b﹣a=0,即a=3b.法2:既然BC是变化的,当点P与点C重合开始,然后BC向右伸展,设向右伸展长度为x,左上阴影增加的是3bx,右下阴影增加的是ax,因为S不变,∴增加的面积相等,∴3bx=ax,∴a=3b.故选:B.【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.10、A【分析】根据等腰三角形的性质和线段垂直平分线的性质可得∠B=∠C=∠BAF,设∠B=x,则△ABC的三个内角都可用含x的代数式表示,然后根据三角形的内角和定理可得关于x的方程,解方程即得答案.【详解】解:∵,∴∠B=∠C,∵EF垂直平分AB,∴FA=FB,∴∠B=∠BAF,设∠B=x,则∠BAF=∠C=x,,根据三角形的内角和定理,得:,解得:,即.故选:A.【点睛】本题考查了等腰三角形的性质、线段垂直平分线的性质和三角形的内角和定理,属于常见题型,熟练掌握上述基本知识是解题的关键.11、C【分析】连接AD,延长AC、DE交于M,求出∠CAB=∠CDM,根据全等三角形的判定得出△ACB≌△DCM,求出AB=DM,求出AD=AM,根据等腰三角形的性质得出即可.【详解】解:连接AD,延长AC、DE交于M,
∵∠ACB=90°,AC=CD,
∴∠DAC=∠ADC=45°,
∵∠ACB=90°,DE⊥AB,
∴∠DEB=90°=∠ACB=∠DCM,
∵∠ABC=∠DBE,
∴∠CAB=∠CDM,
在△ACB和△DCM中∴△ACB≌△DCM(ASA),
∴AB=DM,
∵AB=2DE,
∴DM=2DE,
∴DE=EM,
∵DE⊥AB,
∴AD=AM,故选:C.【点睛】本题考查了全等三角形的性质和判定,等腰直角三角形,等腰三角形的性质和判定等知识点,能根据全等求出AB=DM是解此题的关键.12、D【分析】反例就是满足命题的题设,但不能由它得到结论.【详解】解:当a=﹣3,b=2时,满足a2>b2,而不满足a>b,所以a=﹣3,b=2可作为命题“若a>b,则a2>b2”是假命题的反例.故选:D.【点睛】本题考查命题题意定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.二、填空题(每题4分,共24分)13、>.【分析】由k>0,利用一次函数的性质可得出y值随x值的增大而增大.再结合3>1即可得出y1>y1.【详解】解:∵k>0,∴y值随x值的增大而增大.又∵3>1,∴y1>y1.故答案为:>.【点睛】本题考查了一次函数的性质,牢记“k>0,y随x的增大而增大;k<0,y随x的增大而减小”是解题的关键.14、和【解析】试题分析:首先知有两种情况(顶角是40°和底角是40°时),由等边对等角求出底角的度数,用三角形的内角和定理即可求出顶角的度数.解:△ABC,AB=AC.有两种情况:(1)顶角∠A=40°,(2)当底角是40°时,∵AB=AC,∴∠B=∠C=40°,∵∠A+∠B+∠C=180°,∴∠A=180°﹣40°﹣40°=100°,∴这个等腰三角形的顶角为40°和100°.故答案为40°或100°.考点:等腰三角形的性质;三角形内角和定理.15、6【分析】先根据平行线的性质求出∠ADE=∠EFC,再由ASA可求出△ADE≌△CFE,根据全等三角形的性质即可求出AD的长,再由AB=13cm即可求出BD的长.【详解】解:∵AB∥CF,∴∠ADE=∠EFC,∵E为DF的中点,∴DE=FE,在△ADE和△CFE中,∴△ADE≌△CFE(ASA),∴AD=CF=9cm,∵AB=13cm,∴BD=13﹣7=6cm.故答案为:6.【点睛】本题考查全等三角形的判定和性质,根据条件选择合适的判定定理是解题的关键.16、【分析】先由甲套餐售价1800元,利润率为,可求出甲套餐的成本之和为1500元设每个A礼盒的成本为x元,每个B礼盒的成本为y元,每个C礼盒的成本为z元,则由题意得,可同时消去y和z,得到,再根据一个A礼盒的利润率为,可求出一个A礼盒的售价为50元,进而可得出一个B礼盒与一个C礼盒的售价之和,再由利润率公式求出一个丁套餐的利润率.【详解】设甲套餐的成本之和m元,则由题意得,解得元.设每个A礼盒的成本为x元,每个B礼盒的成本为y元,每个C礼盒的成本为z元,由题意得,同时消去字母y和z,可得所以A礼盒的利润率为,可得其利润元,因此一个A礼盒的售价元.设一个B礼盒的售价为a元,一个C礼盒的售价为b元,则可得,整理得元所以一个丁套餐的售价元一个丁套餐的成本元因此一个丁套餐的利润率故答案为【点睛】本题考查了方程组的应用以及有理数的混合运算,根据运算规律,找出关于x的方程组是解题的关键.17、5【解析】试题分析:n边形的每一个外角都是72°,由多边形外角和是360°,可求得多边形的边数是5.18、1【分析】根据题意,画出图形,然后根据10°所对的直角边是斜边的一半即可求出结论.【详解】解:如图所示:中,,,斜边,∴AC=故答案为:1.【点睛】此题考查的是直角三角形的性质,掌握10°所对的直角边是斜边的一半是解决此题的关键.三、解答题(共78分)19、详见解析【解析】求出BF=EC,可证△ABF≌△DCE,推出∠AFB=∠DEC,根据等角对等边即可得出答案.【详解】∵BE=CF,∴BE+EF=CF+EF,∴BF=EC,在△ABF和△DCE中,∵,∴△ABF≌△DCE(AAS),∴∠AFB=∠DEC,∴OE=OF.【点睛】本题考查了全等三角形的性质和判定,等腰三角形的判定的应用,解答此题的关键是推出△ABF≌△DCE.20、见解析【分析】利用数形结合的思想解决问题即可.【详解】解:由题意梯形的面积为18,剪一个三角形面积为9即可;取两底的中点,连接这两个点得到的线段平分梯形的面积.【点睛】本题考查作图应用与设计,梯形的面积,三角形的面积等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.21、(1),14;(2)a的值为5.5或3.25或2.5;(3).【解析】(1)先利用待定系数法求出直线AB的解析式,再令求出点D的坐标,从而可得出CD的长;(2)先利用点坐标求出BD、AD的长,分点P在CD上和点P在CD延长线上,再利用三角形全等的性质求出DP、DQ的长,最后利用线段的和差即可得;(3)如图4(见解析),连结BP,过点Q作,交延长线于点E,先求出CP的长,再根据点B的坐标可推出,然后可求出BP的长,从而可求出,根据点的对称性可得,又根据平行线的性质可得,最后根据等腰三角形的性质、一次函数的性质即可求出答案.【详解】(1)设直线AB的解析式为把点代入得解得故直线AB的解析式为令,代入得则点D的坐标为故;(2)①如图1,当点P在CD上时,点P只能与点B是对应点则解得;②如图2,当点P在CD延长线上,并且点P与点B是对应点时则解得;③如图3,当点P在CD延长线上,并且点P与点C是对应点时则解得;综上,a的值为5.5或3.25或2.5;(3)如图4,连结BP,过点Q作,交延长线于点E,与点B的纵坐标相等,即∵点P与点关于直线BC对称是等腰直角三角形,且设,则点Q的坐标为,即将代入得,解得故点Q的坐标为.【点睛】本题考查了利用待定系数法求函数的解析式、三角形全等的性质、点的对称性、等腰三角形的性质等知识点,较难的是题(3),通过作辅助线,推出是解题关键.22、见解析【分析】(1)根据题意,描出O、A、B、C各点,连线即得四边形,然后作出各个点的关于轴对称的点,连线即得;(2)分别作BC、AC的垂直平分线,相交于点P,连接构成、、即得答案.【详解】(1)由题意,描出O、A、B、C各点,连线即得四边形,作出其关于轴对称的四边形,作图如下:(2)分别作BC、AC的垂直平分线,相交于点P,连接构成三角形,则点P即为所求作的点.【点睛】考查了数轴描点,会作点的关于直线的对称点,全等三角形的判定以及等腰三角形的判定,熟记几何图形的判定和性质是解题关键.23、(1)m+n;m–n;(2)(m−n)2=(m+n)2–4mn,理由见解析.【解析】分析:(1)观察图形很容易得出图b中大正方形的边长和阴影部分小正方形的边长;(2)观察图形可知大正方形的面积(m+n)2,减去阴影部分的正方形的面积(m−n)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 禽类屠宰加工车间的通风与温控考核试卷
- 泵的故障诊断与维修技术考核试卷
- 装修工程的预算编制与控制考核试卷
- 肉牛饲养与养殖技术规范考核试卷
- 拍卖市场准入制度考核试卷
- 空气清新剂的种类和使用技巧考核试卷
- 《创意智慧教程》课件
- 《创新的课件设计》
- 畜禽屠宰加工设备与仪器考核试卷
- 2025年油冷器项目建议书
- 国开作业公共关系学-实训项目5:赞助活动(六选一)-赞助方案参考(含答案)2
- 35770-2022合规管理体系-要求及使用指南标准及内审员培训教材
- GB/T 19494.1-2023煤炭机械化采样第1部分:采样方法
- 全过程造价咨询服务 投标方案(技术方案)
- 电动扶梯防坠护栏施工方案
- 关于长城的简介资料200字
- 成品出货检验报告模板
- 根管治疗-根管治疗的概述
- 三文鱼知识培训手册课件
- 模块二 底涂层涂装
- 2023年广西壮族自治区南宁市47中入学数学试卷(pdf无答案)
评论
0/150
提交评论