下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.将抛物线y=2(x-7)2+3平移,使平移后的函数图象顶点落在y轴上,则下列平移中正确的是()A.向上平移3个单位B.向下平移3个单位C.向左平移7个单位D.向右平移7个单位2.如图,AB是半圆的直径,AB=2r,C、D为半圆的三等分点,则图中阴影部分的面积是()。A.πr2 B.πr2 C.πr2 D.πr23.用一个4倍放大镜照△ABC,下列说法错误的是()A.△ABC放大后,∠B是原来的4倍B.△ABC放大后,边AB是原来的4倍C.△ABC放大后,周长是原来的4倍D.△ABC放大后,面积是原来的16倍4.已知关于x的二次方程有两个实数根,则k的取值范围是()A. B.且 C. D.且5.下列事件中,是必然事件的是()A.明天一定有雾霾B.国家队射击运动员射击一次,成绩为10环C.13个人中至少有两个人生肖相同D.购买一张彩票,中奖6.下列关于x的方程中,一定是一元二次方程的为()A.ax2+bx+c=0 B.x2﹣2=(x+3)2C.x2+﹣5=0 D.x2=07.设,,是抛物线上的三点,则,,的大小关系为()A. B. C. D.8.如图,在△ABC中,∠A=90°,sinB=,点D在边AB上,若AD=AC,则tan∠BCD的值为()A. B. C. D.9.顺次连接矩形各边中点得到的四边形是()A.平行四边形 B.矩形 C.菱形 D.正方形10.如果某物体的三视图是如图所示的三个图形,那么该物体的形状是A.正方体B.长方体C.三棱柱D.圆锥二、填空题(每小题3分,共24分)11.如图,已知等边的边长为4,,且.连结,并延长交于点,则线段的长度为__________.12.如图,抛物线与轴的负半轴交于点,与轴交于点,连接,点分别是直线与抛物线上的点,若点围成的四边形是平行四边形,则点的坐标为__________.13.已知正比例函数的图像与反比例函数的图像有一个交点的坐标是,则它们的另一个交点坐标为_________.14.一元二次方程的两个实数根为,则=_____.15.已知是方程的一个根,则代数式的值为__________.16.如图,将矩形绕点旋转至矩形位置,此时的中点恰好与点重合,交于点.若,则的面积为__________.17.如图,平面直角坐标系中,已知O(0,0),A(﹣3,4),B(3,4),将△OAB与正方形ABCD组成的图形绕点O顺时针旋转,每次旋转90°,测第70次旋转结束时,点D的坐标为_____.18.如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数的图像上,OA=1,OC=6,则正方形ADEF的边长为.三、解答题(共66分)19.(10分)为测量观光塔高度,如图,一人先在附近一楼房的底端A点处观测观光塔顶端C处的仰角是60°,然后爬到该楼房顶端B点处观测观光塔底部D处的俯角是30°.已知楼房高AB约是45m,请根据以上观测数据求观光塔的高.20.(6分)某小区为改善生态环境,实行生活垃圾的分类处理,将生活垃圾分成三类:厨房垃圾、可回收垃圾和其他垃圾,分别记为,并且设置了相应的垃圾箱“厨房垃圾”箱,“可回收垃圾”箱和“其他垃圾”箱,分别记为.(1)为了了解居民生活垃圾分类投放的情况,现随机抽取了小区三类垃圾箱中总共吨生活垃圾,数据统计如下图(单位:吨):请根据以上信息,估计“厨房垃圾”投放正确的概率;(2)若将三类垃圾随机投入三类垃圾箱,请用画树状图或列表格的方法求出垃圾投放正确的概率.21.(6分)如图,在四边形ABCD中,AD∥BC,AB=BC,对角线AC、BD交于点O,BD平分∠ABC,过点D作DE⊥BC,交BC的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若DC=2,AC=4,求OE的长.22.(8分)某商店购进一批成本为每件40元的商品,经调查发现,该商品每天的销售量(件与销售单价(元之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量与销售单价之间的函数关系式;(2)若商店要使销售该商品每天获得的利润等于1000元,每天的销售量应为多少件?(3)若商店按单价不低于成本价,且不高于65元销售,则销售单价定为多少元时,才能使销售该商品每天获得的利润最大?最大利润是多少元?23.(8分)近期江苏省各地均发布“雾霾”黄色预警,我市某口罩厂商生产一种新型口罩产品,每件制造成本为18元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系满足下表.销售单价x(元/件)…20253040…每月销售量y(万件)…60504020…(1)请你从所学过的一次函数、二次函数和反比例函数三个模型中确定哪种函数能比较恰当地表示y与x的变化规律,并直接写出y与x之间的函数关系式为__________;(2)当销售单价为多少元时,厂商每月获得的利润为440万元?(3)如果厂商每月的制造成本不超过540万元,那么当销售单价为多少元时,厂商每月获得的利润最大?最大利润为多少万元?24.(8分)如图,PA,PB是圆O的切线,A,B是切点,AC是圆O的直径,∠BAC=25°,求∠P的度数.25.(10分)一个不透明的口袋里装有分别标有汉字“书”、“香”、“校”、“园”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀.(1)若从中任取一个球,球上的汉字刚好是“书”的概率为多少?(2)从中任取一球,不放回,再从中任取一球,请用树状图或列表的方法,求取出的两个球上的汉字能组成“书香”的概率.26.(10分)在正方形ABCD中,AB=6,M为对角线BD上任意一点(不与B、D重合),连接CM,过点M作MN⊥CM,交AB(或AB的延长线)于点N,连接CN.感知:如图①,当M为BD的中点时,易证CM=MN.(不用证明)探究:如图②,点M为对角线BD上任一点(不与B、D重合).请探究MN与CM的数量关系,并证明你的结论.应用:(1)直接写出△MNC的面积S的取值范围;(2)若DM:DB=3:5,则AN与BN的数量关系是.
参考答案一、选择题(每小题3分,共30分)1、C【解析】按“左加右减括号内,上加下减括号外”的规律平移即可得出所求函数的解析式.【详解】依题意可知,原抛物线顶点坐标为(7,3),平移后抛物线顶点坐标为(0,t)(t为常数),则原抛物线向左平移7个单位即可.故选C.【点睛】本题考查了二次函数图象的平移,其规律是是:将二次函数解析式转化成顶点式y=a(x-h)2+k
(a,b,c为常数,a≠0),确定其顶点坐标(h,k),在原有函数的基础上“h值正右移,负左移;k值正上移,负下移”.2、D【分析】连接OC、OD,利用同底等高的三角形面积相等可知阴影部分的面积等于扇形OCD的面积,然后计算扇形面积就可.【详解】连接OC、OD.∵点C,D为半圆的三等分点,AB=1r,∴∠AOC=∠BOD=∠COD=180°÷3=60°,OA=r.∵OC=OD,∴△COD是等边三角形,∴∠OCD=60°,∴∠OCD=∠AOC=60°,∴CD∥AB,∴△COD和△CDA等底等高,∴S△COD=S△ACD,∴阴影部分的面积=S扇形CODπr1.故选D.【点睛】本题考查了扇形面积求法,利用已知得出理解阴影部分的面积等于扇形OCD的面积是解题的关键.3、A【解析】试题分析:用一个4倍放大镜照△ABC,放大后与原三角形相似且相似比为1:4,相似三角形对应角相等,对应边的比等于相似比、对应周长的比等于相似比,面积比等于相似比的平方,故A选项错误.故选A.考点:相似三角形的性质.4、B【分析】根据一元二次方程根的判别式让∆=b2−4ac≥1,且二次项的系数不为1保证此方程为一元二次方程.【详解】解:由题意得:且,解得:且,故选:B.【点睛】本题考查了一元二次方程根的判别式,方程有2个实数根应注意两种情况:∆≥1,二次项的系数不为1.5、C【分析】必然事件是一定发生的事情,据此判断即可.【详解】A.明天有雾霾是随机事件,不符合题意;B.国家队射击运动员射击一次,成绩为10环是随机事件,不符合题意;C.总共12个生肖,13个人中至少有两个人生肖相同是必然事件,符合题意;D.购买一张彩票,中奖是随机事件,不符合题意;故选:C.【点睛】本题考查了必然事件与随机事件,必然事件是一定发生的的时间,随机事件是可能发生,也可能不发生的事件,熟记概念是解题的关键.6、D【解析】根据一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;②只含有一个未知数;③未知数的最高次数是1.逐一判断即可.【详解】解:A、当a=0时,ax1+bx+c=0,不是一元二次方程;B、x1﹣1=(x+3)1整理得,6x+11=0,不是一元二次方程;C、,不是整式方程,不是一元二次方程;D、x1=0,是一元二次方程;故选:D.【点睛】本题主要考查一元二次方程的定义,正确把握一元二次方程的定义是解题关键.7、A【分析】根据二次函数的性质得到抛物线y=-(x+1)2+k(k为常数)的开口向下,对称轴为直线x=﹣1,然后根据三个点离对称轴的远近判断函数值的大小.【详解】解:∵抛物线y=-(x+1)2+k(k为常数)的开口向下,对称轴为直线x=﹣1,而A(2,y1)离直线x=﹣1的距离最远,C(﹣2,y3)点离直线x=1最近,∴.故选A.【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.8、C【分析】作DE⊥BC于E,在△CDE中根据已知条件可求得DE,CE的长,从而求得tan∠BCD.【详解】解:作DE⊥BC于E.∵∠A=90°,sinB=,设AC=3a=AD,则AB=4a,BC=5a,∴BD=AB-AD=a.∴DE=BD·sinB=a,∴根据勾股定理,得BE=a,∴CE=BC-BE=a,∴tan∠BCD=故选C.【点睛】本题考查了勾股定理在直角三角形中的运用,考查了直角三角形中三角函数值的计算,本题中正确求三角函数值是解题的关键.9、C【分析】根据三角形的中位线定理,得新四边形各边都等于原四边形的对角线的一半,进而可得连接对角线相等的四边形各边中点得到的四边形是菱形.【详解】解:如图,矩形中,分别为四边的中点,四边形是平行四边形,四边形是菱形.故选C.【点睛】本题主要考查了矩形的性质、菱形的判定,以及三角形中位线定理,关键是掌握三角形的中位线定理及菱形的判定.10、C【解析】解:只有三棱柱的俯视图为三角形,故选C.二、填空题(每小题3分,共24分)11、1【分析】作CF⊥AB,根据等边三角形的性质求出CF,再由BD⊥AB,由CF∥BD,得到△BDE∽△FCE,设BE为x,再根据对应线段成比例即可求解.【详解】作CF⊥AB,垂足为F,∵△ABC为等边三角形,∴AF=AB=2,∴CF=又∵BD⊥AB,∴CF∥BD,∴△BDE∽△FCE,设BE为x,∴,即解得x=1故填:1.【点睛】此题主要考查相似三角形的判定与性质,解题的根据是根据题意构造相似三角形进行求解.12、或或【分析】根据二次函数与x轴的负半轴交于点,与轴交于点.直接令x=0和y=0求出A,B的坐标.再根据平行四边形的性质分情况求出点E的坐标.【详解】由抛物线的表达式求得点的坐标分别为.由题意知当为平行四边形的边时,,且,∴线段可由线段平移得到.∵点在直线上,①当点的对应点为时,如图,需先将向左平移1个单位长度,此时点的对应点的横坐标为,将代入,得,∴.②当点A的对应点为时,同理,先将向右平移2个单位长度,可得点的对应点的横坐标为2,将代入得,∴当为平行四边形的对角线时,可知的中点坐标为,∵在直线上,∴根据对称性可知的横坐标为,将代入得,∴.综上所述,点的坐标为或或.【点睛】本题是二次函数的综合题,主要考查了特殊点的坐标的确定,平行四边形的性质,解本题的关键是分情况解决问题的思想.13、(-1,-2)【分析】根据反比例函数图象的对称性得到反比例函数图象与正比例函数图象的两个交点关于原点对称,所以写出点关于原点对称的点的坐标即可.【详解】∵正比例函数的图像与反比例函数的图像的两个交点关于原点对称,其中一个交点的坐标为,∴它们的另一个交点的坐标是.
故答案为:.【点睛】本题主要考查了反比例函数图象的中心对称性,理解反比例函数与正比例函数的交点一定关于原点对称是关键.14、1【分析】直接根据一元二次方程根与系数的关系进行求解即可.【详解】的两个实数根为,,.故答案为1.【点睛】本题主要考查一元二次方程根与系数的关系,熟记根与系数的关系是解题的关键.15、【分析】根据方程的根的定义,得,结合完全平方公式,即可求解.【详解】∵是方程的一个根,∴,即:∴=1+1=1.故答案是:1.【点睛】本题主要考查方程的根的定义以及完全平方公式,,掌握完全平方公式,是解题的关键.16、【分析】根据旋转后AC的中点恰好与D点重合,利用旋转的性质得到直角三角形ACD中,∠ACD=30°,再由旋转后矩形与已知矩形全等及矩形的性质得到∠DAE为30°,进而得到∠EAC=∠ECA,利用等角对等边得到AE=CE,设AE=CE=x,表示出AD与DE,利用勾股定理列出关于x的方程,求出方程的解得到x的值,确定出EC的长,即可求出三角形AEC面积.【详解】∵旋转后AC的中点恰好与D点重合,
即AD=AC′=AC,
∴在Rt△ACD中,∠ACD=30°,即∠DAC=60°,
∴∠DAD′=60°,
∴∠DAE=30°,
∴∠EAC=∠ACD=30°,
∴AE=CE,
在Rt△ADE中,设AE=EC=x,∵AB=CD=6
∴DE=DC-EC=AB-EC=6-x,AD=CD×tan∠ACD=×6=2,
根据勾股定理得:x2=(6-x)2+(2)2,
解得:x=4,
∴EC=4,
则S△AEC=EC•AD=4故答案为:4【点睛】此题考查了旋转的性质,含30度直角三角形的性质,勾股定理,以及等腰三角形的性质,熟练掌握性质及定理是解本题的关键.17、(3,﹣10)【分析】首先根据坐标求出正方形的边长为6,进而得到D点坐标,然后根据每旋转4次一个循环,可知第70次旋转结束时,相当于△OAB与正方形ABCD组成的图形绕点O顺时针旋转2次,每次旋转90°,即可得出此时D点坐标.【详解】解:∵A(﹣3,4),B(3,4),∴AB=3+3=6,∵四边形ABCD为正方形,∴AD=AB=6,∴D(﹣3,10),∵70=4×17+2,∴每4次一个循环,第70次旋转结束时,相当于△OAB与正方形ABCD组成的图形绕点O顺时针旋转2次,每次旋转90°,此时D点与(﹣3,10)关于原点对称,∴此时点D的坐标为(3,﹣10).故答案为:(3,﹣10).【点睛】本题考查坐标与图形,根据坐标求出D点坐标,并根据旋转特点找出规律是解题的关键.18、2【解析】试题分析:由OA=1,OC=6,可得矩形OABC的面积为6;再根据反比例函数系数k的几何意义,可知k=6,∴反比例函数的解析式为;设正方形ADEF的边长为a,则点E的坐标为(a+1,a),∵点E在抛物线上,∴,整理得,解得或(舍去),故正方形ADEF的边长是2.考点:反比例函数系数k的几何意义.三、解答题(共66分)19、135【分析】根据“爬到该楼房顶端B点处观测观光塔底部D处的俯角是30°”可以求出AD的长,然后根据“在附近一楼房的底端A点处观测观光塔顶端C处的仰角是60°”求出CD的长即可.【详解】∵爬到该楼房顶端B点处观测观光塔底部D处的俯角是30°,∴∠ADB=30°,在Rt△ABD中,AD=,∴AD=45m,∵在一楼房的底端A点处观测观光塔顶端C处的仰角是60°,∴在Rt△ACD中,CD=AD•tan60°=45×=135m.故观光塔高度为135m.【点睛】本题主要考查了三角函数的应用,熟练掌握相关概念是解题关键.20、(1);(2).【分析】(1)利用频率估计概率,通过计算“厨房垃圾”投放正确的百分比估计“厨房垃圾”投放正确的概率.(2)先画树状图展示所有9种可能的结果数,再找出垃圾投放正确的结果数,然后根据概率公式计算;【详解】解:(1)∵∴估计“厨房垃圾”投放正确的概率为;画树状图如下∵共有种等可能的结果数,其中垃圾投放正确的结果数为,∴垃圾投放正确的概率为故答案是:(1);(2)【点睛】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出,再从中选出符合事件的结果数目,求出概率.21、(1)证明见解析;(2)1.【分析】(1)由AD∥BC,BD平分∠ABC,可得AD=AB,结合AD∥BC,可得四边形ABCD是平行四边形,进而,可证明四边形ABCD是菱形,(2)由四边形ABCD是菱形,可得OC=AC=2,在Rt△OCD中,由勾股定理得:OD=1,根据“在直角三角形中,斜边上的中线等于斜边的一半”,即可求解.【详解】(1)证明:∵AD∥BC,∴∠ADB=∠CBD,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠ABD,∴AD=AB,∵AB=BC,∴AD=BC,∵AD∥BC,∴四边形ABCD是平行四边形,又∵AB=BC,∴四边形ABCD是菱形;(2)解:∵四边形ABCD是菱形,∴AC⊥BD,OB=OD,OA=OC=AC=2,在Rt△OCD中,由勾股定理得:OD==1,∴BD=2OD=8,∵DE⊥BC,∴∠DEB=90°,∵OB=OD,∴OE=BD=1.【点睛】本题主要考查菱形的判定定理及性质定理,题目中的“双平等腰”模型是证明四边形是菱形的关键,掌握直角三角形的性质和勾股定理,是求OE长的关键.22、(1)y=-2x+200;(2)100件或20件;(3)销售单价定为65元时,该超市每天的利润最大,最大利润1750元【分析】(1)将点(40,120)、(60,80)代入一次函数表达式,即可求解;(2)由题意得(x-40)(-2x+200)=1000,解不等式即可得到结论;(3)由题意得w=(x-40)(-2x+200)=-2(x-70)2+1800,即可求解.【详解】(1)设y与销售单价x之间的函数关系式为:y=kx+b,
将点(40,120)、(60,80)代入一次函数表达式得:解得,所以关系式为y=-2x+200;(2)由题意得:(x-40)(-2x+200)=1000解得x1=50,x2=90;所以当x=50时,销量为:100件;当x=90时,销量为20件;(3)由题意可得利润W=(x-40)(-2x+200)=-2(x-70)2+1800,∵-2<0,故当x<70时,w随x的增大而增大,而x≤65,
∴当x=65时,w有最大值,此时,w=1750,
故销售单价定为65元时,该超市每天的利润最大,最大利润1750元.【点睛】考查了二次函数的应用以及一元二次不等式的应用、待定系数法求一次函数解析式等知识,正确利用销量×每件的利润=w得出函数关系式是解题关键.23、(1)y=﹣2x+100;(2)当销售单价为28元或1元时,厂商每月获得的利润为41万元;(3)当销售单价为35元时,厂商每月获得的利润最大,最大利润为510万元.【分析】(1)直接利用待定系数法求出一次函数解析式;(2)根据利润=销售量×(销售单价﹣成本),代入代数式求出函数关系式,令利润z=41,求出x的值;(3)根据厂商每月的制造成本不超过51万元,以及成本价18元,得出销售单价的取值范围,进而得出最大利润.【详解】解:(1)由表格中数据可得:y与x之间的函数关系式为:y=kx+b,把(20,60),(25,50)代入得:解得:故y与x之间的函数关系式为:y=﹣2x+100;(2)设总利润为z,由题意得,z=y(x﹣18)=(﹣2x+100)(x﹣18)=﹣2x2+136x﹣1800;当z=41时,﹣2x2+136x﹣1800=41,解得:x1=28,x2=1.答:当销售单价为28元或1元时,厂商每月获得的利润为41万元;(3)∵厂商每月的制造成本不超过51万元,每件制造成本为18元,∴每月的生产量为:小于等于=30万件,y=﹣2x+100≤30,解得:x≥35,∵z=﹣2x2+136x﹣1800=﹣2(x﹣34)2+512,∴图象开口向下,对称轴右侧z随x的增大而减小,∴x=35时,z最大为:510万元.当销售单价为35元时,厂商每月获得的利润最大,最大利润为510万元.【点睛】本题考查的是二次函数在实际生活中的应用,关键是根据题意求出二次函数的解析式以及利用增减性求出最值.24、∠P=50°【解析】根据切线性质得出PA=PB,∠PAO=90°,求出∠PAB的度数,得出∠PAB=∠PBA,根据三角形的内角和定理求出即可.【详解】∵PA、PB是⊙O的切线,∴PA=PB,∴∠PAB=∠PBA,∵AC是⊙O的直径,PA是⊙O的切线,∴AC⊥AP,∴∠CAP=90°,∵∠BAC=25°,∴∠PBA=∠PAB=90°-25°=65°,∴∠P=180°-∠PAB-∠PBA=180°
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 天津市滨海新区2026年事业单位公开招聘工作人员备考题库带答案详解
- 安义县林业局2025年公开招聘专职护林员备考题库及1套完整答案详解
- 中国煤炭地质总局2026年度应届高校毕业生招聘备考题库附答案详解
- 2026年乌苏市兴融建设投资集团有限责任公司招聘人员备考题库参考答案详解
- 2026年晋江市市政工程建设有限公司权属公司公开招聘项目制工作人员备考题库及一套完整答案详解
- 地热供暖2025年农村地区推广与节能效果分析报告
- 2026年乌兰县紧密型县域医共体面向社会公开招聘工作人员的备考题库及一套参考答案详解
- 海口市美兰区公办幼儿园2025年秋季人员招聘备考题库及一套完整答案详解
- 2026年广西百色工业投资发展集团有限公司公开招聘备考题库及1套参考答案详解
- 2025年农村电商品牌五年培育措施与品牌溢价潜力报告
- 雨课堂学堂在线学堂云《教育心理学》单元测试考核答案
- 自动化设备维护保养指导手册
- 有限空间大型污水井作业工岗位考试试卷及答案
- 车险组长年终工作总结
- GB/T 30341-2025机动车驾驶员培训教练场技术要求
- 2025年脾胃科出科考试题及答案
- 河北省2025年职业院校嵌入式系统应用开发赛项(高职组)技能大赛参考试题库(含答案)
- 2025年公需课新质生产力试题及答案
- 2025年70岁老年人换新本驾驶证需考三力测试题及答案
- 城建档案规范化管理流程与操作指南
- 保安员冬季安全知识培训课件
评论
0/150
提交评论