2023届河北省邯郸市邯郸市育华中学九年级数学第一学期期末统考模拟试题含解析_第1页
2023届河北省邯郸市邯郸市育华中学九年级数学第一学期期末统考模拟试题含解析_第2页
2023届河北省邯郸市邯郸市育华中学九年级数学第一学期期末统考模拟试题含解析_第3页
2023届河北省邯郸市邯郸市育华中学九年级数学第一学期期末统考模拟试题含解析_第4页
2023届河北省邯郸市邯郸市育华中学九年级数学第一学期期末统考模拟试题含解析_第5页
免费预览已结束,剩余19页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.一个圆柱的三视图如图所示,若其俯视图为圆,则这个圆柱的体积为()A. B. C. D.2.下列是我国四大银行的商标,其中不是轴对称图形的是()A. B. C. D.3.木杆AB斜靠在墙壁上,当木杆的上端A沿墙壁NO竖直下滑时,木杆的底端B也随之沿着射线OM方向滑动.下列图中用虚线画出木杆中点P随之下落的路线,其中正确的是()A. B.C. D.4.我们要遵守交通规则,文明出行,做到“红灯停,绿灯行”,小刚每天从家到学校需经过三个路口,且每个路口都安装了红绿灯,每个路口红灯和绿灯亮的时间相同,那么小刚从家出发去学校,他遇到两次红灯的概率是()A. B. C. D.5.如图2,在平面直角坐标系中,点的坐标为(1,4)、(5,4)、(1、),则外接圆的圆心坐标是A.(2,3) B.(3,2) C.(1,3) D.(3,1)6.如图,E,F分别为矩形ABCD的边AD,BC的中点,若矩形ABCD与矩形EABF相似,AB=1,则矩形ABCD的面积是()A.4 B.2 C. D.7.方程x2+2x-5=0经过配方后,其结果正确的是A. B.C. D.8.要得到函数y=2(x-1)2+3的图像,可以将函数y=2x2的图像()A.向左平移1个单位长度,再向上平移3个单位长度B.向左平移1个单位长度,再向下平移3个单位长度C.向右平移1个单位长度,再向上平移3个单位长度D.向右平移1个单位长度,再向下平移3个单位长度9.抛物线的对称轴是()A.直线 B.直线C.直线 D.直线10.如图,四边形ABCD是⊙O的内接四边形,若⊙O的半径为4,且∠B=2∠D,连接AC,则线段AC的长为()A.4 B.4 C.6 D.811.如图所示,AB∥CD,∠A=50°,∠C=27°,则∠AEC的大小应为()A.23° B.70° C.77° D.80°12.的值等于()A. B. C. D.二、填空题(每题4分,共24分)13.设x1,x2是一元二次方程7x2﹣5=x+8的两个根,则x1+x2的值是_____.14.如图,△ABC中,D、E分别在AB、AC上,DE∥BC,AD:AB=1:3,则△ADE与△ABC的面积之比为______.15.若=,则的值为______.16.如图,平行四边形中,,,,点E在AD上,且AE=4,点是AB上一点,连接EF,将线段EF绕点E逆时针旋转120°得到EG,连接DG,则线段DG的最小值为____________________.17.某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.若商场平均每天要赢利1200元,设每件衬衫应降价x元,则所列方程为_______________________________________.(不用化简)18.若边长为2的正方形内接于⊙O,则⊙O的半径是___________.三、解答题(共78分)19.(8分)如图,抛物线y=x2+bx+c与x轴交于A(-1,0),(1)求该抛物线的解析式;(2)抛物线的对称轴上是否存在一点M,使ΔACM的周长最小?若存在,请求出点M的坐标,若不存在,请说明理由.(3)设抛物线上有一个动点P,当点P在该抛物线上滑动到什么位置时,满足SΔPAB=8,并求出此时点20.(8分)如图,⊙O是△ABC的外接圆,PA是⊙O切线,PC交⊙O于点D.(1)求证:∠PAC=∠ABC;(2)若∠BAC=2∠ACB,∠BCD=90°,AB=,CD=2,求⊙O的半径.21.(8分)如图,在Rt△ABC中,∠A=90°,AC=3,AB=4,动点P从点A出发,沿AB方向以每秒2个单位长度的速度向终点B运动,点Q为线段AP的中点,过点P向上作PM⊥AB,且PM=3AQ,以PQ、PM为边作矩形PQNM.设点P的运动时间为t秒.(1)线段MP的长为(用含t的代数式表示).(2)当线段MN与边BC有公共点时,求t的取值范围.(3)当点N在△ABC内部时,设矩形PQNM与△ABC重叠部分图形的面积为S,求S与t之间的函数关系式.(4)当点M到△ABC任意两边所在直线距离相等时,直接写出此时t的值.22.(10分)如图,一次函数y=kx+b与反比例函数y=mx的图象交于A(1,4),B(4,(1)求反比例函数和一次函数的解析式;(2)直接写出当x>0时,kx+b<(3)点P是x轴上的一动点,试确定点P并求出它的坐标,使PA+PB最小.23.(10分)如图,以AB边为直径的⊙O经过点P,C是⊙O上一点,连结PC交AB于点E,且∠ACP=60°,PA=PD.(1)试判断PD与⊙O的位置关系,并说明理由;(2)若点C是弧AB的中点,已知AB=4,求CE•CP的值.24.(10分)如图,已知反比例函数y=的图象与一次函数y=x+b的图象交于点A(1,4),点B(﹣4,n).(1)求n和b的值;(2)求△OAB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.25.(12分)赵化鑫城某超市购进了一批单价为16元的日用品,销售一段时间后,为获得更多的利润,商场决定提高销售的价格,经试验发现,若按每件20元销售,每月能卖360件;若按每件25元销售,每月能卖210件;若每月的销售件数y(件)与价格x(元/件)满足y=kx+b.(1)求出k与b的值,并指出x的取值范围?(2)为了使每月获得价格利润1920元,商品价格应定为多少元?(3)要使每月利润最大,商品价格又应定为多少?最大利润是多少?26.阅读材料:以下是我们教科书中的一段内容,请仔细阅读,并解答有关问题.公元前3世纪,古希腊学家阿基米德发现:若杠杆上的两物体与支点的距离与其重量成反比,则杠杆平衡,后来人们把它归纳为“杠杆原理”,通俗地说,杠杆原理为:阻力×阻力臂=动力×动力臂(问题解决)若工人师傅欲用撬棍动一块大石头,已知阻力和阻力臂不变,分别为1500N和0.4m.(1)动力F(N)与动力臂l(m)有怎样的函数关系?当动力臂为1.5m时,撬动石头需要多大的力?(2)若想使动力F(N)不超过题(1)中所用力的一半,则动力臂至少要加长多少?(数学思考)(3)请用数学知识解释:我们使用棍,当阻力与阻力臂一定时,为什么动力臂越长越省力.

参考答案一、选择题(每题4分,共48分)1、B【分析】先由三视图得出圆柱的底面直径和高,然后根据圆柱的体积=底面积×高计算即可.【详解】解:由三视图可知圆柱的底面直径为,高为,底面半径为,,故选B.【点睛】本题考查三视图的知识,解决此类图的关键是由三视图得到相应的立体图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.2、A【分析】根据轴对称图形和的概念和各图形特点解答即可.【详解】解:A、不是轴对称图形,故本选项正确;

B、是轴对称图形,故本选项错误;

C、是轴对称图形,故本选项错误;

D、是轴对称图形,故本选项错误;

故选:A.【点睛】本题考查了轴对称图形的特点,判断轴对称图形的关键是寻找对称轴,图象沿对称轴折叠后可重合.3、D【解析】解:如右图,连接OP,由于OP是Rt△AOB斜边上的中线,所以OP=AB,不管木杆如何滑动,它的长度不变,也就是OP是一个定值,点P就在以O为圆心的圆弧上,那么中点P下落的路线是一段弧线.故选D.4、B【分析】画树状图得出所有情况数和遇到两次红灯的情况数,根据概率公式即可得答案.【详解】根据题意画树状图如下:共有8种等情况数,其中遇到两次红灯的有3种,则遇到两次红灯的概率是,故选:B.【点睛】本题考查利用列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比;根据树状图得到遇两次红灯的情况数是解题关键.5、D【解析】根据垂径定理的推论“弦的垂直平分线必过圆心”,作两条弦的垂直平分线,交点即为圆心.解答:解:根据垂径定理的推论,则作弦AB、AC的垂直平分线,交点O1即为圆心,且坐标是(3,1).故选D.6、D【分析】根据相似多边形的性质列出比例式,计算即可.【详解】∵矩形ABCD与矩形EABF相似,∴,即=,解得,AD=,∴矩形ABCD的面积=AB•AD=,故选:D.【点睛】此题主要考查相似多边形,解题的关键是根据相似的定义列出比例式进行求解.7、C【详解】解:根据配方法的意义,可知在方程的两边同时加减一次项系数的一半的平方,可知,即,配方为.故选:C.【点睛】此题主要考查了配方法,解题关键是明确一次项的系数,然后在方程的两边同时加减一次项系数的一半的平方,即可求解.8、C【解析】找到两个抛物线的顶点,根据抛物线的顶点即可判断是如何平移得到.【详解】解:∵y=2(x-1)2+3的顶点坐标为(1,3),y=2x2的顶点坐标为(0,0),∴将抛物线y=2x2向右平移1个单位,再向上平移3个单位,可得到抛物线y=2(x-1)2+3故选:C.【点睛】本题考查了二次函数图象与几何变换,解答时注意抓住点的平移规律和求出关键点顶点坐标.9、C【解析】用对称轴公式即可得出答案.【详解】抛物线的对称轴,故选:C.【点睛】本题考查了抛物线的对称轴,熟记对称轴公式是解题的关键.10、B【分析】连接OA,OC,利用内接四边形的性质得出∠D=60°,进而得出∠AOC=120°,利用含30°的直角三角形的性质解答即可.【详解】连接OA,OC,过O作OE⊥AC,∵四边形ABCD是⊙O的内接四边形,∠B=2∠D,∴∠B+∠D=3∠D=180°,解得:∠D=60°,∴∠AOC=120°,在Rt△AEO中,OA=4,∴AE=2,∴AC=4,故选:B.【点睛】此题考查内接四边形的性质,关键是利用内接四边形的性质得出∠D=60°.11、C【分析】根据平行线的性质可求解∠ABC的度数,利用三角形的内角和定理及平角的定义可求解.【详解】解:∵AB∥CD,∠C=27°,∴∠ABC=∠C=27°,∵∠A=50°,∴∠AEB=180°﹣27°﹣50°=103°,∴∠AEC=180°﹣∠AEB=77°,故选:C.【点睛】本题主要考查平行线的性质,三角形的内角和定理,掌握平行线的性质是解题的关键.12、D【分析】根据特殊角的三角函数即得.【详解】故选:D.【点睛】本题考查特殊角的三角函数,解题关键是熟悉,及的正弦、余弦和正切值.二、填空题(每题4分,共24分)13、【解析】把方程化为一般形式,利用根与系数的关系直接求解即可.【详解】把方程7x2-5=x+8化为一般形式可得7x2-x-13=0,

∵x1,x2是一元二次方程7x2-5=x+8的两个根,

∴x1+x2=.故答案是:.【点睛】主要考查根与系数的关系,掌握一元二次方程的两根之和等于-、两根之积等于是解题的关键.14、1:1.【解析】试题分析:由DE∥BC,可得△ADE∽△ABC,根据相似三角形的面积之比等于相似比的平方可得S△ADE:S△ABC=(AD:AB)2=1:1.考点:相似三角形的性质.15、4【分析】由=可得,代入计算即可.【详解】解:∵=,∴,则故答案为:4.【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.16、【分析】结合已知条件,作出辅助线,通过全等得出ME=GN,且随着点F的移动,ME的长度不变,从而确定当点N与点D重合时,使线段DG最小.【详解】解:如图所示,过点E做EM⊥AB交BA延长线于点M,过点G作GN⊥AD交AD于点N,∴∠EMF=∠GNE=90°∵四边形ABCD是平行四边形,BC=12∴AD∥BC,AD=BC=12,∴∠BAD=120°,∴∠AFE+∠AEF=60°又∵EG为EF逆时针旋转120°所得,∴∠FEG=120°,EF=EG,∴∠AEF+∠GEN=60°,∴∠AFE=∠GEN,∴在△EMF与△GNE中,∠AFE=∠GEN,∠EMF=∠GNE=90°,EF=EG,∴△EMF≌△GNE(AAS)∴ME=GN又∵∠EAM=∠B=60°,AE=4,∴∠AEM=30°,,,∴,∴当点N与点D重合时,使线段DG最小,如图所示,此时,故答案为:.【点睛】本题考查了平行四边形的性质、旋转的性质、全等三角形的构造、几何中的动点问题,解题的关键是作出辅助线,得到全等三角形,并发现当点N与点D重合时,使线段DG最小.17、(40-x)(2x+20)=1200【解析】试题解析:每件衬衫的利润:销售量:方程为:故答案为:点睛:这个题目属于一元二次方程的实际应用,利用销售量每件利润=总利润,列出方程即可.18、【分析】连接OB,CO,由题意得∠BOC=90°,OC=OB,在Rt△BOC中,根据勾股定理即可求解.【详解】解:连接OB,OC,如图∵四边形ABCD是正方形且内接于⊙O∴∠BOC=90°,

∴在Rt△BOC中,利用勾股定理得:∵OC=OB,正方形边长=2∴利用勾股定理得:则∴.

∴⊙O的半径是,

故答案为:.【点睛】此题主要考查了正多边形和圆,本题需仔细分析图形,利用勾股定理即可解决问题.三、解答题(共78分)19、(1)y=x2﹣2x﹣1;(2)存在;M(1,﹣2);(1)(1+22,4)或(1﹣22,4)或(1,﹣4).【解析】(1)由于抛物线y=x2+bx+c与x轴交于A(-1,0),B(1,0)两点,那么可以得到方程x2+bx+c=0的两根为x=-1或x=1,然后利用根与系数即可确定b、c的值;(2)点B是点A关于抛物线对称轴的对称点,在抛物线的对称轴上有一点M,要使MA+MC的值最小,则点M就是BC与抛物线对称轴的交点,利用待定系数法求出直线BC的解析式,把抛物线对称轴x=1代入即可得到点M的坐标;(1)根据S△PAB=2,求得P的纵坐标,把纵坐标代入抛物线的解析式即可求得P点的坐标.【详解】(1)∵抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(1,0)两点,∴方程x2+bx+c=0的两根为x=﹣1或x=1,∴﹣1+1=﹣b,﹣1×1=c,∴b=﹣2,c=﹣1,∴二次函数解析式是y=x2﹣2x﹣1.(2)∵点A、B关于对称轴对称,∴点M为BC与对称轴的交点时,MA+MC的值最小,设直线BC的解析式为y=kx+t(k≠0),则3k+t=0t=-3,解得:k=1∴直线AC的解析式为y=x﹣1,∵抛物线的对称轴为直线x=1,∴当x=1时,y=﹣2,∴抛物线对称轴上存在点M(1,﹣2)符合题意;(1)设P的纵坐标为|yP|,∵S△PAB=2,∴12AB•|yP∵AB=1+1=4,∴|yP|=4,∴yP=±4,把yP=4代入解析式得,4=x2﹣2x﹣1,解得,x=1±22,把yP=﹣4代入解析式得,﹣4=x2﹣2x﹣1,解得,x=1,∴点P在该抛物线上滑动到(1+22,4)或(1﹣22,4)或(1,﹣4)时,满足S△PAB=2.【点睛】此题主要考查了利用抛物线与x轴的交点坐标确定函数解析式,二次函数的对称轴上点的坐标以及二次函数的性质,二次函数图象上的坐标特征,解题的关键是利用待定系数法得到关于b、c的方程,解方程即可解决问题.20、(1)见解析;(2)⊙O的半径为1【分析】(1)连接AO延长AO交⊙O于点E,连接EC.想办法证明:∠B+∠EAC=90°,∠PAC+∠EAC=90°即可解决问题;

(2)连接BD,作OM⊥BC于M交⊙O于F,连接OC,CF.设⊙O的半径为x.求出OM,根据CM2=OC2-OM2=CF2-FM2构建方程即可解决问题;【详解】(1)连接AO并延长交⊙O于点E,连接EC.∵AE是直径,∴∠ACE=90°,∴∠EAC+∠E=90°,∵∠B=∠E,∴∠B+∠EAC=90°,∵PA是切线,∴∠PAO=90°,∴∠PAC+∠EAC=90°,∴∠PAC=∠ABC.(2)连接BD,作OM⊥BC于M交⊙O于F,连接OC,CF.设⊙O的半径为x.∵∠BCD=90°,∴BD是⊙O的直径,∵OM⊥BC,∴BM=MC,,∵OB=OD,∴OM=CD=1,∵∠BAC=∠BDC=2∠ACB,,∴∠BDF=∠CDF,∴∠ACB=∠CDF,∴,∴AB=CF=2,∵CM2=OC2﹣OM2=CF2﹣FM2,∴x2﹣12=(2)2﹣(x﹣1)2,∴x=1或﹣2(舍),∴⊙O的半径为1.【点睛】本题考查切线的性质,垂径定理,圆周角定理推论,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会用转化的思想思考问题.21、(1)3t;(2)满足条件的t的值为≤t≤;(3)S=;(4)满足条件的t的值为或或.【分析】(1)根据路程、速度、时间的关系再结合题意解答即可.(2)分别出点M、N落在BC上时的t的范围即可;(3)分重叠部分是矩形PQNM和五边形PQNEF两种情况进行解答即可;(4)按以下三种情形:当点M落在∠ABC的角平分线BF上时,满足条件.作FELBC于E;当点M落在∠ACB的角平分线上时,满足条件作EFLBC于F;当点M落在△ABC的∠ACB的外角的平分线上时,满足条件.分别求解即可解答.【详解】解:(1)由题意AP=2t,AQ=PQ=t,∵PM=3PQ,∴PM=3t.故答案为3t.(2)如图2﹣1中,当点M落在BC上时,∵PM∥AC,∴,∴,解得t=如图2﹣2中,当点N落在BC上时,∵NQ∥AC,∴,∴,解得t=,综上所述,满足条件的t的值为≤t≤.(3)如图3﹣1中,当0<t≤时,重叠部分是矩形PQNM,S=3t2如图3﹣2中,当<t≤时,重叠部分是五边形PQNEF.S=S矩形PQNM﹣S△EFM=3t2﹣•[3t﹣(4﹣2t)]•[3t﹣(4﹣2t)]=﹣t2+18t﹣6,综上所述,.(4)如图4﹣1中,当点M落在∠ABC的角平分线BF上时,满足条件.作FE⊥BC于E.∵∠FAB=∠FEB=90°,∠FBA=∠FBE,BF=BF,∴△BFA≌△BFE(AAS),∴AF=EF,AB=BE=4,设AF=EF=x,∵∠A=90°,AC=3,AB=4,∴BC==5,∴EC=BC﹣BE=5﹣4=1,在Rt△EFC中,则有x2+12=(3﹣x)2,解得x=,∵PM∥AF,∴,∴,∴t=如图4﹣2中,当点M落在∠ACB的角平分线上时,满足条件作EF⊥BC于F.同法可证:△ECA≌△ECF(AAS),∴AE=EF,AC=CF=3,设AE=EF=y,∴BF=5﹣3=2,在Rt△EFB中,则有x2+22=(4﹣x)2,解得x=,∵PM∥AC,∴,∴,解得t=.如图4﹣3中,当点M落在△ABC的∠ACB的外角的平分线上时,满足条件.设MC的延长线交BA的延长线于E,作EF⊥BC交BC的延长线于分,同法可证:AC=CF=3,EF=AE,设EF=EA=x,在Rt△EFB中,则有x2+82=(x+4)2,解得x=6,∵AC∥PM,∴,∴,解得t=,综上所述,满足条件的t的值为或或.【点睛】本题考查了矩形的性质,多边形的面积,角平分线的性质等知识,掌握分类讨论的思想思是解答本题的关键.22、(1)y=4x,y=﹣x+5;(2)0<x<1或x>4;(3)P的坐标为(175【解析】(1)把A(1,4)代入y=mx,求出m=4,把B(4,n)代入y=4x,求出n=1,然后把把A(1,4)、(4,1)代入y=(2)根据图像解答即可;(3)作B关于x轴的对称点B′,连接AB′,交x轴于P,此时PA+PB=AB′最小,然后用待定系数法求出直线AB′的解析式即可.【详解】解:(1)把A(1,4)代入y=mx,得:m=4∴反比例函数的解析式为y=4x把B(4,n)代入y=4x,得:n=1∴B(4,1),把A(1,4)、(4,1)代入y=kx+b,得:k+b=44k+b=1解得:k=-1∴一次函数的解析式为y=﹣x+5;(2)根据图象得当0<x<1或x>4,一次函数y=﹣x+5的图象在反比例函数y=4x∴当x>0时,kx+b<mx的解集为0<x<1或x>4(3)如图,作B关于x轴的对称点B′,连接AB′,交x轴于P,此时PA+PB=AB′最小,∵B(4,1),∴B′(4,﹣1),设直线AB′的解析式为y=px+q,∴p+q=44p+q=-1解得p=-5∴直线AB′的解析式为y=-5令y=0,得-5解得x=175∴点P的坐标为(175,0【点睛】本题考查了待定系数法求反比例函数及一次函数解析式,利用图像解不等式,轴对称最短等知识.熟练掌握待定系数法是解(1)的关键,正确识图是解(2)的关键,根据轴对称的性质确定出点P的位置是解答(3)的关键.23、(1)PD是⊙O的切线.证明见解析.(2)1.【解析】试题分析:(1)连结OP,根据圆周角定理可得∠AOP=2∠ACP=120°,然后计算出∠PAD和∠D的度数,进而可得∠OPD=90°,从而证明PD是⊙O的切线;(2)连结BC,首先求出∠CAB=∠ABC=∠APC=45°,然后可得AC长,再证明△CAE∽△CPA,进而可得,然后可得CE•CP的值.试题解析:(1)如图,PD是⊙O的切线.证明如下:连结OP,∵∠ACP=60°,∴∠AOP=120°,∵OA=OP,∴∠OAP=∠OPA=30°,∵PA=PD,∴∠PAO=∠D=30°,∴∠OPD=90°,∴PD是⊙O的切线.(2)连结BC,∵AB是⊙O的直径,∴∠ACB=90°,又∵C为弧AB的中点,∴∠CAB=∠ABC=∠APC=45°,∵AB=4,AC=Absin45°=.∵∠C=∠C,∠CAB=∠APC,∴△CAE∽△CPA,∴,∴CP•CE=CA2=()2=1.考点:相似三角形的判定与性质;圆心角、弧、弦的关系;直线与圆的位置关系;探究型.24、(1)-1;(2)7.5;(3)x>1或﹣4<x<0.【分析】(1)把A点坐标分别代入反比例函数与一次函数解析式,求出k和b的值,把B点坐标代入反比例函数解析式求出n的值即可;(2)设直线y=x+3与y轴的交点为C,由S△AOB=S△AOC+S△BOC,根据A、B两点坐标及C点坐标,利用三角形面积公式即可得答案;(3)利用函数图像,根据A、B两点坐标即可得答案.【详解】(1)把A点(1,4)分别代入反比例函数y=,一次函数y=x+b,得k=1×4,1+b=4,解得k=4,b=3,∵点B(﹣4,n)也在反比例函数y=的图象上,∴n==﹣1;(2)如图,设直线y=x+3与y轴的交点为C,∵当x=0时,y=3,∴C(0,3),∴S△AOB=S△AOC+S△BOC=×3×1+×3×4=7.5,(3)∵B(﹣4,﹣1),A(1,4),∴根据图象可知:当x>1或﹣4<x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论