下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.四条线段a,b,c,d成比例,其中b=3cm,c=8cm,d=12cm,则a=()A.2cm B.4cm C.6cm D.8cm2.如图,过⊙O上一点C作⊙O的切线,交⊙O直径AB的延长线于点D.若∠D=40°,则∠A的度数为()A.20° B.25° C.30° D.40°3.如图,的半径为2,圆心的坐标为,点是上的任意一点,,且、与轴分别交于、两点,若点、点关于原点对称,则的最大值为()A.7 B.14 C.6 D.154.在阳光的照射下,一块三角板的投影不会是()A.线段 B.与原三角形全等的三角形C.变形的三角形 D.点5.关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是()A.q<16 B.q>16C.q≤4 D.q≥46.在Rt△ABC中,∠C=90°,AB=5,内切圆半径为1,则三角形的周长为()A.15 B.12 C.13 D.147.如图,的直径,是的弦,,垂足为,且,则的长为()A.10 B.12 C.16 D.188.若关于的方程的解为,,则方程的解为()A. B. C. D.9.如图,公园中一正方形水池中有一喷泉,喷出的水流呈抛物线状,测得喷出口高出水面0.8m,水流在离喷出口的水平距离1.25m处达到最高,密集的水滴在水面上形成了一个半径为3m的圆,考虑到出水口过高影响美观,水滴落水形成的圆半径过大容易造成水滴外溅到池外,现决定通过降低出水口的高度,使落水形成的圆半径为2.75m,则应把出水口的高度调节为高出水面()A.0.55米 B.米 C.米 D.0.4米10.下列式子中最简二次根式是()A. B. C. D.二、填空题(每小题3分,共24分)11.若点,是抛物线上的两个点,则此抛物线的对称轴是___.12.如图,在△ABC中,AC=6,BC=10,,点D是AC边上的动点(不与点C重合),过点D作DE⊥BC,垂足为E,点F是BD的中点,连接EF,设CD=x,△DEF的面积为S,则S与x之间的函数关系式为_______________________.13.如图,已知一次函数y=kx﹣3(k≠0)的图象与x轴,y轴分别交于A,B两点,与反比例函数y=(x>0)交于C点,且AB=AC,则k的值为_____.14.二次函数的图象与轴只有一个公共点,则的值为________.15.如果点A(-1,4)、B(m,4)在抛物线y=a(x-1)2+h上,那么m的值为_____.16.已知:如图,,,分别切于,,点.若,则的周长为________.17.如果关于x的方程x2-5x+a=0有两个相等的实数根,那么a=_____.18.如图,在正方形网格中,每个小正方形的边长都是1,的每个顶点都在格点上,则_____.三、解答题(共66分)19.(10分)如图,已知AB是⊙O的直径,过点O作弦BC的平行线,交过点A的切线AP于点P,连结AC.求证:△ABC∽△POA.20.(6分)如图,已知线段,于点,且,是射线上一动点,,分别是,的中点,过点,,的圆与的另一交点(点在线段上),连结,.(1)当时,求的度数;(2)求证:;(3)在点的运动过程中,当时,取四边形一边的两端点和线段上一点,若以这三点为顶点的三角形是直角三角形,且为锐角顶点,求所有满足条件的的值.21.(6分)(1)(x-5)2-9=0(2)x2+4x-2=022.(8分)如图,抛物线与轴交于、两点,与轴交于点.(1)求点、、的坐标;(2)若点在轴的上方,以、、为顶点的三角形与全等,平移这条抛物线,使平移后的抛物线经过点与点,请你写出平移过程,并说明理由。23.(8分)如图,△ABC是一块锐角三角形的材料,边BC=120mm,高AD=80mm,要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是多少mm.24.(8分)如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象相交于第一、三象限内的两点,与轴交于点.⑴求该反比例函数和一次函数的解析式;⑵在轴上找一点使最大,求的最大值及点的坐标;⑶直接写出当时,的取值范围.25.(10分)一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4.随机摸取一个小球然后放回,再随机摸出一个小球,请用树状图或列表法求下列事件的概率.(1)两次取出的小球的标号相同;(2)两次取出的小球标号的和等于6.26.(10分)如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5m,CD=10m,求树高AB.
参考答案一、选择题(每小题3分,共30分)1、A【解析】由四条线段a、b、c、d成比例,根据比例线段的定义,即可得,又由b=3cm,c=8cm,d=12cm,即可求得a的值.【详解】∵四条线段a、b、c、d成比例,∴∵b=3cm,c=8cm,d=12cm,
∴
解得:a=2cm.
故答案为A.【点睛】此题考查了比例线段的定义.解题的关键是熟记比例线段的概念.2、B【分析】直接利用切线的性质得出∠OCD=90°,进而得出∠DOC=50°,进而得出答案.【详解】解:连接OC,∵DC是⊙O的切线,C为切点,∴∠OCD=90°,∵∠D=40°,∴∠DOC=50°,∵AO=CO,∴∠A=∠ACO,∴∠A=∠DOC=25°.
故选:B.【点睛】此题主要考查了切线的性质,正确得出∠DOC=50°是解题关键.3、B【分析】根据“PA⊥PB,点A与点B关于原点O对称”可知AB=2OP,从而确定要使AB取得最大值,则OP需取得最大值,然后过点M作MQ⊥x轴于点Q,确定OP的最大值即可.【详解】∵PA⊥PB∴∠APB=90°∵点A与点B关于原点O对称,∴AO=BO∴AB=2OP若要使AB取得最大值,则OP需取得最大值,连接OM,交○M于点,当点P位于位置时,OP取得最小值,过点M作MQ⊥x轴于点Q,则OQ=3,MQ=4,∴OM=5∵∴当点P在的延长线于○M的交点上时,OP取最大值,∴OP的最大值为3+2×2=7∴AB的最大值为7×2=14故答案选B.【点睛】本题考查的是圆上动点与最值问题,能够找出最值所在的点是解题的关键.4、D【分析】将一个三角板放在太阳光下,当它与阳光平行时,它所形成的投影是一条线段;当它与阳光成一定角度但不垂直时,它所形成的投影是三角形.【详解】解:根据太阳高度角不同,所形成的投影也不同.当三角板与阳光平行时,所形成的投影为一条线段;当它与阳光形成一定角度但不垂直时,它所形成的投影是三角形,不可能是一个点,故选D.【点睛】本题考查了平行投影特点,不同位置,不同时间,影子的大小、形状可能不同,具体形状应视其外在形状,及其与光线的夹角而定.5、A【解析】∵关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,∴△>0,即82-4q>0,∴q<16,故选A.6、B【分析】作出图形,设内切圆⊙O与△ABC三边的切点分别为D、E、F,连接OE、OF可得四边形OECF是正方形,根据正方形的四条边都相等求出CE、CF,根据切线长定理可得AD=AF,BD=BE,从而得到AF+BE=AB,再根据三角形的周长的定义解答即可.【详解】解:如图,设内切圆⊙O与△ABC三边的切点分别为D、E、F,连接OE、OF,∵∠C=90°,∴四边形OECF是正方形,∴CE=CF=1,由切线长定理得,AD=AF,BD=BE,∴AF+BE=AD+BD=AB=5,∴三角形的周长=5+5+1+1=1.故选:B【点睛】本题考查了三角形的内切圆与内心,切线长定理,作辅助线构造出正方形是解题的关键,难点在于将三角形的三边分成若干条小的线段,作出图形更形象直观.7、C【分析】连接OC,根据圆的性质和已知条件即可求出OC=OB=,BE=,从而求出OE,然后根据垂径定理和勾股定理即可求CE和DE,从而求出CD.【详解】解:连接OC∵,∴OC=OB=,BE=∴OE=OB-BE=6∵是的弦,,∴DE=CE=∴CD=DE+CE=16故选:C.【点睛】此题考查的是垂径定理和勾股定理,掌握垂径定理和勾股定理的结合是解决此题的关键.8、C【分析】设方程中,,根据已知方程的解,即可求出关于t的方程的解,然后根据即可求出结论.【详解】解:设方程中,则方程变为∵关于的方程的解为,,∴关于的方程的解为,,∴对于方程,或3解得:,,故选C.【点睛】此题考查的是根据已知方程的解,求新方程的解,掌握换元法是解决此题的关键.9、B【分析】如图,以O为原点,建立平面直角坐标系,由题意得到对称轴为x=1.25=,A(0,0.8),C(3,0),列方程组求得函数解析式,即可得到结论.【详解】解:如图,以O为原点,建立平面直角坐标系,由题意得,对称轴为x=1.25=,A(0,0.8),C(3,0),设解析式为y=ax2+bx+c,∴,解得:,所以解析式为:y=x2+x+,当x=2.75时,y=,∴使落水形成的圆半径为2.75m,则应把出水口的高度调节为高出水面08﹣=,故选:B.【点睛】本题考查了二次函数的实际应用,根据题意建立合适的坐标系,找到点的坐标,用待定系数法解出函数解析式是解题的关键10、A【解析】根据最简二次根式的定义:被开方数是整数或整式,且不含开得尽方的因数或因式进行判断即可.【详解】A.是最简二次根式,符合题意;B.,不是最简二次根式,不符合题意;C.被开方数是分数,不是最简二次根式,不符合题意;D.被开方数是分数,不是最简二次根式,不符合题意;故选A.【点睛】本题考查最简二次根式,熟练掌握最简二次根式的定义是解题的关键.二、填空题(每小题3分,共24分)11、x=3【分析】根据抛物线的对称性即可确定抛物线对称轴.【详解】解:点,是抛物线上的两个点,且纵坐标相等.根据抛物线的对称性知道抛物线对称轴是直线.故答案为:.【点睛】本题考察了二次函数的图像和性质,对于二次函数y=ax2+bx+c(a,b,c为常数,a≠0),抛物线上两个不同点P1(x1,y1),P2(x2,y2),若有y1=y2,则P1,P2两点是关于抛物线对称轴对称的点,且这时抛物线的对称轴是直线:.12、【分析】可在直角三角形CED中,根据DE、CE的长,求出△BED的面积即可解决问题.【详解】在Rt△CDE中,,CD=x
∴∴,
∴.
∵点F是BD的中点,
∴,
故答案为.【点睛】本题考查解直角三角形,三角形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.13、k=【解析】试题分析:如图:作CD⊥x轴于D,则OB∥CD,∴△AOB∽△ADC,∴,∵AB=AC,∴OB=CD,由直线y=kx﹣3(k≠0)可知B(0,﹣3),∴OB=3,∴CD=3,把y=3代入y=(x>0)解得,x=4,∴C(4,3),代入y=kx﹣3(k≠0)得,3=4k﹣3,解得k=,故答案为.考点:反比例函数与一次函数的交点问题.14、【解析】根据△=b2-4ac=0时,抛物线与x轴有1个交点得到△=(-2)2-4m=0,然后解关于m的方程即可.【详解】根据题意得△=(-2)2-4m=0,
解得m=1.
故答案是:1.【点睛】考查了抛物线与x轴的交点:对于二次函数y=ax2+bx+c(a,b,c是常数,a≠0),△=b2-4ac决定抛物线与x轴的交点个数:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.15、1【分析】根据函数值相等两点关于对称轴对称,可得答案.【详解】由点A(﹣1,4)、B(m,4)在抛物线y=a(x﹣1)2+h上,得:(﹣1,4)与(m,4)关于对称轴x=1对称,m﹣1=1﹣(﹣1),解得:m=1.故答案为1.【点睛】本题考查了二次函数图象上点的坐标特征,利用函数值相等两点关于对称轴对称得出m﹣1=1﹣(﹣1)是解题的关键.16、【分析】根据切线长定理由PA、PB分别切⊙O于A、B得到PB=PA=10cm,由于DC与⊙O相切于E,再根据切线长定理得到CA=CE,DE=DB,然后三角形周长的定义得到△PDC的周长=PD+DC+PC=PD+DB+CA+PC,然后用等线段代换后得到三角形PDC的周长等于PA+PB.【详解】∵PA、PB分别切⊙O于A、B,
∴PB=PA=10cm,
∵CA与CE为⊙的切线,
∴CA=CE,
同理得到DE=DB,
∴△PDC的周长=PD+DC+PC=PD+DB+CA+PC
∴△PDC的周长=PA+PB=20cm,
故答案为20cm.【点睛】本题考查了切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角.17、【分析】若一元二次方程有两个相等的实数根,则方程的根的判别式等于0,由此可列出关于a的等式,求出a的值.【详解】∵关于x的方程x2-5x+a=0有两个相等的实数根,∴△=25-4a=0,即a=.故答案为:.【点睛】一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.18、2【分析】如图,取格点E,连接EC.利用勾股定理的逆定理证明∠AEC=90°即可解决问题.【详解】解:如图,取格点E,连接EC.易知AE=,∴AC2=AE2+EC2,∴∠AEC=90°,∴tan∠BAC=.【点睛】本题考查解直角三角形,勾股定理以及逆定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.三、解答题(共66分)19、证明见解析.【解析】试题分析:由BC∥OP可得∠AOP=∠B,根据直径所对的圆周角为直角可知∠C=90°,再根据切线的性质知∠OAP=90°,从而可证△ABC∽△POA.试题解析:证明:∵BC∥OP,∴∠AOP=∠B,∵AB是直径,∴∠C=90°,∵PA是⊙O的切线,切点为A,∴∠OAP=90°,∴∠C=∠OAP,∴△ABC∽△POA.考点:1.切线的性质;2.相似三角形的判定.20、(1)75°;(2)证明见解析;(3)或或.【分析】(1)根据三角形ABP是等腰三角形,可得∠B的度数;(2)连接MD,根据MD为△PAB的中位线,可得∠MDB=∠APB,再根据∠BAP=∠ACB,∠BAP=∠B,即可得到∠ACB=∠B,进而得出△ABC∽△PBA,得出答案即可;(3)记MP与圆的另一个交点为R,根据AM2+MR2=AR2=AC2+CR2,即可得到PR=,MR=,再根据Q为直角三角形锐角顶点,分四种情况进行讨论:当∠ACQ=90°时,当∠QCD=90°时,当∠QDC=90°时,当∠AEQ=90°时,即可求得MQ的值.【详解】解:(1)∵MN⊥AB,AM=BM,∴PA=PB,∴∠PAB=∠B,∵∠APB=30°,∴∠B=75°,(2)如图1,连接MD,∵MD为△PAB的中位线,∴MD∥AP,∴∠MDB=∠APB,∵∠BAC=∠MDC=∠APB,又∵∠BAP=180°-∠APB-∠B,∠ACB=180°-∠BAC-∠B,∴∠BAP=∠ACB,∵∠BAP=∠B,∴∠ACB=∠B,∴AC=AB,由(1)可知PA=PB,∴△ABC∽△PBA,∴,∴AB2=BC•PB;(3)如图2,记MP与圆的另一个交点为R,∵MD是Rt△MBP的中线,∴DM=DP,∴∠DPM=∠DMP=∠RCD,∴RC=RP,∵∠ACR=∠AMR=90°,∴AM2+MR2=AR2=AC2+CR2,∴12+MR2=22+PR2,∴12+(4-PR)2=22+PR2,∴PR=,∴MR=,(一)当∠ACQ=90°时,AQ为圆的直径,∴Q与R重合,∴MQ=MR=;(二)如图3,当∠QCD=90°时,在Rt△QCP中,PQ=2PR=,∴MQ=;(三)如图4,当∠QDC=90°时,∵BM=1,MP=4,∴BP=,∴DP=BP=,∵cos∠MPB=,∴PQ=,∴MQ=;(四)如图5,当∠AEQ=90°时,由对称性可得∠AEQ=∠BDQ=90°,∴MQ=;综上所述,MQ的值为或或.【点睛】此题主要考查了圆的综合题、等腰三角形的性质、三角形中位线定理,勾股定理,圆周角定理的综合应用,解决问题的关键是作辅助线构造直角三角形,运用旋转的性质以及含30°角的直角三角形的性质进行计算求解,解题时注意分类思想的运用.21、(1)x=8或x=1;(1)x=-1或x=--1【分析】(1)先移项,利用直接开平方法解方程;
(1)利用配方法解方程即可求解.【详解】解:(1)(x-5)1-9=0(x-5)1=9∴x-5=3或x-5=-3∴x=8或x=1;(1)x1+4x-1=0(x1+4x+4)-6=0(x+1)1=6∴x+1=或x+1=-∴x=-1或x=--1.【点睛】本题考查一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.22、(1),,;(2),.理由见解析.【分析】(1)令中y=0,求出点A、B的坐标,令x=0即可求出点C的坐标;(2)分两种全等情况求出点D的坐标,再设平移后的解析式,将点B、D的坐标代入即可求出解析式,由平移前的解析式根据顶点式的数值变化得到平移的方向与距离.【详解】(1)令中y=0,得,解得:,∴,.当中x=0时,y=-3,∴.(2)当△ABD1≌△ABC时,∵,∴由轴对称得D1(0,3),设平移后的函数解析式为,将点B、D1的坐标代入,得,解得,∴平移后的解析式为,∵平移前的解析式为,∴将向右平移3个单位,再向上3个单位得到;当△ABD2≌△BAC时,即△ABD2≌△BAD1,作D2H⊥AB,∴AH=OB=1,D2H=OD1=3,∴OH=OA-AH=3-1=2,∴D2(-2,3),设平移后的解析式为,将点B、D2的坐标代入得,解得,∴平移后的函数解析式为,∵平移前的解析式为,∴将向右平移1个单位,再向上平移3个单位得到.【点睛】此题考查二次函数图象与坐标轴交点的求法,函数图象平移的规律,求图象平移规律时需先求得函数的解析式,将平移前后的解析式都化为顶点式,根据顶点式中h、k的变化确定平移的方向与距离.23、48mm【分析】设正方形的边长为x,表示出AI的长度,然后根据相似三角形对应高的比等于相似比列出比例式,然后进行计算即可得解.【详解】设正方形的边长为xmm,则AI=AD﹣x=80﹣x,∵EFHG是正方形,∴EF∥GH,∴△AEF∽△ABC,∴,即,解得x=48mm,∴这个正方形零件的边长是48mm.【点睛】本题主要考查了相似三角形判定与性质的综合运用,熟练掌握相关概念是解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年农业研学旅行课程设计方法
- 2026年企业宣传片拍摄制作指南
- 2026年教育信息化深度融合应用课
- 白银资源回收与再生利用手册
- 2026湖南长沙市开福区青竹湖湘一健翎学校春季教师招聘8人备考题库及完整答案详解一套
- 2026年农业知识产权海外布局方法
- 赤壁怀古课件
- 职业噪声性耳鸣的早期筛查策略
- 职业健康风险评估中的毒理学应用方法
- 职业健康监护的全程化管理
- 2026湖北十堰市丹江口市卫生健康局所属事业单位选聘14人参考考试题库及答案解析
- 手术区消毒和铺巾
- (正式版)DBJ33∕T 1307-2023 《 微型钢管桩加固技术规程》
- 2025年宠物疫苗行业竞争格局与研发进展报告
- 企业安全生产责任培训课件
- 绿化防寒合同范本
- 2025年中国矿产资源集团所属单位招聘笔试参考题库附带答案详解(3卷)
- 烟草山东公司招聘考试真题2025
- 海尔管理会计案例分析
- 水果合同供货合同范本
- 酒吧宿舍管理制度文本
评论
0/150
提交评论