




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.估计的值应在()A.5和6之间 B.6和7之间 C.7和8之间 D.8和9之间2.如图,在△ABC中,AB=AC,∠B=50°,P是边AB上的一个动点(不与顶点A重合),则∠BPC的度数可能是A.50° B.80° C.100° D.130°3.如图,△ABC中,AD⊥BC交BC于D,AE平分∠BAC交BC于E,F为BC的延长线上一点,FG⊥AE交AD的延长线于G,AC的延长线交FG于H,连接BG,下列结论:①∠DAE=∠F;②∠DAE=(∠ABD﹣∠ACE);③S△AEB:S△AEC=AB:AC;④∠AGH=∠BAE+∠ACB,其中正确的结论有()个.A.1 B.2 C.3 D.44.下面运算结果为的是A. B. C. D.5.若把分式中的x与y都扩大3倍,则所得分式的值()A.缩小为原来的 B.缩小为原来的C.扩大为原来的3倍 D.不变6.施工队要铺设一段全长2000米的管道,因在中考期间需停工两天,实际每天施工需比原来计划多50米,才能按时完成任务,求原计划每天施工多少米.设原计划每天施工x米,则根据题意所列方程正确的是()A. B.C. D.7.估计的值在()A.3.2和3.3之间 B.3.3和3.4之间 C.3.4和3.5之间 D.3.5和3.6之间8.下列长度的三条线段能组成直角三角形的是A.3,4,5 B.2,3,4 C.4,6,7 D.5,11,129.已知一次函数,图象与轴、轴交点、点,得出下列说法:①A,;②、两点的距离为5;③的面积是2;④当时,;其中正确的有()A.1个 B.2个 C.3个 D.4个10.表示实数a与1的和不大于10的不等式是()A.a+1>10 B.a+1≥10 C.a+1<10 D.a+1≤10二、填空题(每小题3分,共24分)11.在实数范围内分解因式:_______________________.12.如图,在长方形ABCD的边AD上找一点P,使得点P到B、C两点的距离之和最短,则点P的位置应该在_____.13.在某中学举行的演讲比赛中,七年级5名参赛选手的成绩如下表所示,根据表中提供的数据,则3号选手的成绩为_____.选手1号2号3号4号5号平均成绩得分909589889114.计算的结果为______.15.若将进行因式分解的结果为,则=_____.16.若将三个数、、表示在数轴上,则其中被墨迹覆盖的数是_______.17.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,点D在BC边上,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则AD=_____cm.18.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、E的面积分别为2,5,1,1.则正方形D的面积是______.三、解答题(共66分)19.(10分)某厂的甲、乙两个小组共同生产某种产品,若甲组先生产1天,然后两组又各自生产5天,则两组产品一样多;若甲组先生产了300个产品,然后两组又各自生产了4天,则乙组比甲组多生产100个产品;甲、乙两组每天各生产多少个产品?(请用方程组解)20.(6分)如图,在中,,,点在线段上运动(不与、重合),连接,作,交线段于.(1)当时,=,=;点从向运动时,逐渐(填“增大”或“减小”);(2)当等于多少时,,请说明理由;(3)在点的运动过程中,的形状可以是等腰三角形吗?若可以,请直接写出的度数.若不可以,请说明理由.21.(6分)某中学决定在“五·四艺术周”为一个节目制作A、B两种道具,共80个.制作的道具需要甲、乙两种材料组合而成,现有甲种材料700件,乙种材料500件,已知组装A、B两种道具所需的甲、乙两种材料,如下表所示:甲种材料(件)乙种材料(件)A道具68B道具104经过计算,制作一个A道具的费用为5元,一个B道具的费用为4.5元.设组装A种道具x个,所需总费用为y元.(1)求y与x的函数关系式,并求出x的取值范围;(2)问组装A种道具多少个时,所需总费用最少,最少费用是多少?22.(8分)化简并求值:,其中x=﹣1.23.(8分)如图,,点、分别在边、上,且,请问吗?为什么?24.(8分)已知:,.(1)求的值;(2)的值.25.(10分)在△ABC中,∠BAC=120°,AD平分∠BAC,且AD=AB,若∠EDF=60°,其两边分别交边AB,AC于点E,F.(1)求证:△ABD是等边三角形;(2)求证:BE=AF.26.(10分)小明的妈妈在菜市场买回3斤萝卜,2斤排骨,准备做萝卜排骨汤,妈妈说:“今天买这两样菜共花了78.7元,去年这时买3斤萝卜,2斤排骨只要43元”.爸爸说:“报纸上说了萝卜的单价下降10%,排骨单价上涨90%”,请你来算算,小明的妈妈去年买的萝卜和排骨的单价分别是多少?
参考答案一、选择题(每小题3分,共30分)1、B【分析】化简原式等于,因为,所以,即可求解;【详解】解:,∵,,故选B.【点睛】本题考查估算无理数的大小;能够将给定的无理数锁定在相邻的两个整数之间是解题的关键.2、C【分析】根据等边对等角可得∠B=∠ACB=50°,再根据三角形内角和计算出∠A的度数,然后根据三角形内角与外角的关系可得∠BPC>∠A,再因为∠B=50°,所以∠BPC<180°-50°=130°进而可得答案.【详解】∵AB=AC,∠B=50°,∴∠B=∠ACB=50°,∴∠A=180°-50°×2=80°,∵∠BPC=∠A+∠ACP,∴∠BPC>∠A,∴∠BPC>80°.∵∠B=50°,∴∠BPC<180°-50°=130°,则∠BPC的值可能是100°.故选C.【点睛】此题主要考查了等腰三角形的性质,关键是掌握等腰三角形两底角相等.3、D【分析】如图,①根据三角形的内角和即可得到∠DAE=∠F;②根据角平分线的定义得∠EAC=,由三角形的内角和定理得∠DAE=90°﹣∠AED,变形可得结论;③根据三角形的面积公式即可得到S△AEB:S△AEC=AB:CA;④根据三角形的内角和和外角的性质即刻得到∠AGH=∠BAE+∠ACB.【详解】解:如图,AE交GF于M,①∵AD⊥BC,FG⊥AE,∴∠ADE=∠AMF=90°,∵∠AED=∠MEF,∴∠DAE=∠F;故①正确;②∵AE平分∠BAC交BC于E,∴∠EAC=,∠DAE=90°﹣∠AED,=90°﹣(∠ACE+∠EAC),=90°﹣(∠ACE+),=(180°﹣2∠ACE﹣∠BAC),=(∠ABD﹣∠ACE),故②正确;③∵AE平分∠BAC交BC于E,∴点E到AB和AC的距离相等,∴S△AEB:S△AEC=AB:CA;故③正确,④∵∠DAE=∠F,∠FDG=∠FME=90°,∴∠AGH=∠MEF,∵∠MEF=∠CAE+∠ACB,∴∠AGH=∠CAE+∠ACB,∴∠AGH=∠BAE+∠ACB;故④正确;故选:D.【点睛】本题考查的知识点是关于角平分线的计算,利用三角形的内角和定理灵活运用角平分线定理是解此题的关键.4、B【解析】根据合并同类项法则、同底数幂的除法、同底数幂的乘法及幂的乘方逐一计算即可判断.【详解】.,此选项不符合题意;.,此选项符合题意;.,此选项不符合题意;.,此选项不符合题意;故选:.【点睛】本题考查了整式的运算,解题的关键是掌握合并同类项法则、同底数幂的除法、同底数幂的乘法及幂的乘方.5、A【分析】根据分式的基本性质即可求出答案.【详解】解:原式==,故选:A.【点睛】本题考查分式的基本性质,关键在于熟记基本性质.6、B【分析】设原计划每天铺设x米,则实际施工时每天铺设(x+50)米,根据:原计划所用时间-实际所用时间=2,列出方程即可.【详解】设原计划每天施工x米,则实际每天施工(x+50)米,
根据题意,可列方程:=2,
故选B.【点睛】本题考查了由实际问题抽象出分式方程,解题的关键是读懂题意,找出合适的等量关系,列出方程.7、C【分析】利用平方法即可估计,得出答案.【详解】解:∵3.52=12.25,3.42=11.56,而12.25>11.6>11.56,∴,故选:C.【点睛】本题考查无理数的估算,掌握算术平方根的意义是正确解答的关键.8、A【分析】利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可.【详解】A、∵32+42=52,∴三条线段能组成直角三角形,故A选项正确;B、∵22+32≠42,∴三条线段不能组成直角三角形,故B选项错误;C、∵42+62≠72,∴三条线段不能组成直角三角形,故C选项错误;D、∵52+112≠122,∴三条线段不能组成直角三角形,故D选项错误;故选A.【点睛】考查勾股定理的逆定理,如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.9、B【分析】①根据坐标轴上点的坐标特点即得;②根据两点之间距离公式求解即得;③先根据坐标求出与,再计算面积即可;④先将转化为不等式,再求解即可.【详解】∵在一次函数中,当时∴A∵在一次函数中,当时∴∴①正确;∴两点的距离为∴②是错的;∵,,∴∴③是错的;∵当时,∴,∴④是正确的;∴说法①和④是正确∴正确的有2个故选:B.【点睛】本题主要考查了一次函数与坐标轴的交点、两点距离公式及一次函数与不等式的关系,熟练掌握坐标轴上点的坐标特点及一次函数与不等式的相互转化是解题关键.10、D【分析】根据题意写出不等式即可.【详解】由题意可得:a+1≤1.故选D.【点睛】此题主要考查了由实际问题抽象出一元一次不等式,正确理解题意是解题关键.二、填空题(每小题3分,共24分)11、【分析】先解方程0,然后把已知的多项式写成的形式即可.【详解】解:解方程0,得,∴.故答案为:.【点睛】本题考查了利用解一元二次方程分解因式,掌握解答的方法是解题的关键.12、AD的中点【详解】分析:过AD作C点的对称点C′,根据轴对称的性质或线段垂直平分线的性质得出AC=PC′,从而根据两点之间线段最短,得出这时的P点使BP+PC的之最短.详解:如图,过AD作C点的对称点C′,根据轴对称的性质可得:PC=PC′,CD=C′D∵四边形ABCD是矩形∴AB=CD∴△ABP≌△DC′P∴AP=PD即P为AD的中点.故答案为P为AD的中点.点睛:本题考查了轴对称-最短路线问题,矩形的性质,两点之间线段最短的性质.得出动点P所在的位置是解题的关键.13、1【分析】先求出5名参赛选手的总成绩,再减去其它选手的成绩,即可得出3号选手的成绩.【详解】解:∵观察表格可知5名选手的平均成绩为91分,∴3号选手的成绩为91×5﹣90﹣95﹣89﹣88=1(分);故答案为:1.【点睛】此题考查了算术平均数,掌握算术平均数的计算方法是解题的关键.14、【分析】根据多项式除以单项式的方法,先把这个多项式的每一项分别除以单项式,再把所得的商相加即可.【详解】解:=.故答案为:.【点睛】本题考查整式的除法,多项式除以单项式实质就是转化为单项式除以单项式,多项式除以单项式的结果仍是一个多项式.15、-1【分析】将(3x+1)(x-1)展开,则3x1-mx+n=3x1-x-1,从而求出m、n的值,进一步求得mn的值.【详解】解:∵(3x+1)(x-1)=3x1-x-1,
∴3x1-mx+n=3x1-x-1,
∴m=1,n=-1,∴mn=-1.
故答案为-1.【点睛】本题考查了因式分解的应用,知道因式分解前后两式相等是解题的关键.16、【分析】首先利用估算的方法分别得到、、前后的整数(即它们分别在哪两个整数之间),从而可判断出被覆盖的数.【详解】解:∵-2<<-1,2<<3,3<<4,且墨迹覆盖的范围是1-3,∴能被墨迹覆盖的数是.故答案为:.【点睛】本题考查了实数与数轴的对应关系,以及估算无理数大小的能力,难度不大.17、1【分析】根据翻折的性质可知:AC=AE=6,CD=DE,设CD=DE=x,在Rt△DEB中利用勾股定理解决.【详解】解:在Rt△ABC中,∵AC=6,BC=8,∴,∵△ADE是由△ACD翻折,∴AC=AE=6,EB=AB﹣AE=10﹣6=4,设CD=DE=x,在Rt△DEB中,∵DE2+EB2=DB2,∴x2+42=(8﹣x)2∴x=1,∴CD=1.在Rt△ACD中,.故答案为1.【点睛】本题考查翻折的性质、勾股定理,利用翻折不变性是解决问题的关键.18、2【分析】设中间两个正方形和正方形D的面积分别为x,y,z,然后有勾股定理解答即可.【详解】解:设中间两个正方形和正方形D的面积分别为x,y,z,则由勾股定理得:x=2+5=7;y=1+z;7+y=7+1+z=1;即正方形D的面积为:z=2.故答案为:2.【点睛】本题考查了勾股定理的应用,掌握在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.三、解答题(共66分)19、甲:500,乙:600【解析】试题分析:设甲、乙两组每天个各生产个产品,则根据若甲组先生产1天,然后两组又一起生产了5天,则两组产量一样多.若甲组先生产了300个产品,然后两组同时生产4天,则乙组比甲组多生产100个产品两个关系列方程组求解.试题解析:设甲、乙两组每天个各生产x、y个产品,根据题意得:解得:答:甲、乙两组每天个各生产500、600个产品.20、(1)40°,100°;减小;(2)当DC=2时,△ABD≌△DCE;理由见解析;(3)当∠ADB=110°或80°时,△ADE是等腰三角形.【分析】(1)利用平角的定义可求得∠EDC的度数,再根据三角形内角定理即可求得∠DEC的度数,利用三角形外角的性质可判断∠BDA的变化情况;(2)利用∠ADC=∠B+∠BAD,∠ADC=∠ADE+∠EDC得出∠BAD=∠EDC,进而求出△ABD≌△DCE;(3)根据等腰三角形的判定以及分类讨论得出即可.【详解】(1)∵∠BDA=100°,∠ADE=40°,∠BDA+∠ADE+∠EDC=180°,∴∠EDC=180°-100°-40°=40°,∵∠EDC+∠DEC+∠C=180°,∠C=40°,∴∠DEC=180°-40°-40°=100°;∵∠BDA=∠C+∠DAC,∠C=40°,点D从B向C运动时,∠DAC逐渐减小,∴点D从B向C运动时,∠BDA逐渐减小,故答案为:40°,100°;减小;(2)当DC=2时,△ABD≌△DCE;理由:∵∠ADE=40°,∠B=40°,又∵∠ADC=∠B+∠BAD,∠ADC=∠ADE+∠EDC.∴∠BAD=∠EDC.在△ABD和△DCE中,,∴△ABD≌△DCE(ASA);(3)①当AD=AE时,∠ADE=∠AED=40°,∵∠AED>∠C,∴此时不符合;②当DA=DE时,即∠DAE=∠DEA=(180°-40°)=70°,∵∠BAC=180°-40°-40°=100°,∴∠BAD=100°-70°=30°;∴∠BDA=180°-30°-40°=110°;③当EA=ED时,∠ADE=∠DAE=40°,∴∠BAD=100°-40°=60°,∴∠BDA=180°-60°-40°=80°;∴当∠ADB=110°或80°时,△ADE是等腰三角形.【点睛】此题主要考查了全等三角形的判定与性质和三角形内角和定理以及等腰三角形的性质等知识,根据已知得出△ABD≌△DCE是解题关键.21、(1)y=0.5x+360,25≤x≤1;(2)当组装A道具25个时,所花费用最少,最少费用是372.5元【分析】(1)设组装A种道具x个,则B种道具(80﹣x)个,根据“总费用=A种道具费用+B种道具费用”即可得出y与x的函数关系式;再根据题意列不等式组即可得出x的取值范围;(2)根据(1)的结论,结合一次函数的性质解答即可.【详解】(1)设组装A种道具x个,则B种道具(80﹣x)个,根据题意得:y=5x+4.5(80-x)=0.5x+360根据题意,得:解得25≤x≤1.∴x的取值范围是25≤x≤1.(2)由(1)得,y=0.5x+360,
∵y是x的一次函数,且0.5>0,
∴y随着x的增大而增大,
∴当x=25时,y最小=0.5×25+360=372.5
答:当组装A道具25个时,所花费用最少,最少费用是372.5元.【点睛】本题考查了一次函数的应用,关键是通过实际问题列出一次函数关系,然后根据一次函数的性质解决问题.22、2.【解析】试题分析:先将进行化简,再将x的值代入即可;试题解析:原式=﹣•(x﹣1)==,当x=﹣1时,原式=﹣2.23、,证明见解析【分析】根据题意证明△ABE≌△ACD即可求解.【详解】,证明如下:∵,∴AB-BD=AC-CE,即AD=AE,又∴△ABE≌△ACD(SAS)∴.【点睛】此题主要考查全等三角形的判定与性质,解题的关键是熟知全等三角形的判定定理.24、(1)1;(2)【分析】(1)先将变形为3m3n,再代入求解;
(2)将变形为(3m
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 社会工作评估工具试题及答案
- 项目管理培训试题及答案
- 公文撰写试题及答案
- 多媒体设计中的多义性与文化表达的关系试题及答案
- 土力学试题及答案
- 平稳应对2025年网络规划设计师考试试题及答案
- 威海初三英语试题及答案
- 软件评测师考试经典试题及答案解析
- 从容应战的中级社会工作者试题及答案
- 2025培训机构零星维修合同书范本
- 企业自主评价委托协议书
- 2025银行面试题目及答案柜员
- 软装搭配与色彩运用考核试卷
- 2025年中国冶金锰矿石市场调查研究报告
- 2025年国际贸易实务课程考试题及答案
- 2025届广西钦州市东场中学七下数学期末复习检测试题含解析
- 地方政府治理中的典型案例试题及答案
- “卉”心独具工程制图知到智慧树期末考试答案题库2025年昆明理工大学
- 电梯安全管理员培训
- 通信工程安全试题及答案
- 河北开放大学2025年《医用基础化学#》形考任务2答案
评论
0/150
提交评论