版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.已知某二次函数的图象如图所示,则这个二次函数的解析式为()A.y=﹣3(x﹣1)2+3 B.y=3(x﹣1)2+3C.y=﹣3(x+1)2+3 D.y=3(x+1)2+32.已知,是圆的半径,点,在圆上,且,若,则的度数为()A. B. C. D.3.关于反比例函数y=,下列说法中错误的是()A.它的图象是双曲线B.它的图象在第一、三象限C.y的值随x的值增大而减小D.若点(a,b)在它的图象上,则点(b,a)也在它的图象上4.如果x=4是一元二次方程x²-3x=a²的一个根,则常数a的值是()A.2 B.﹣2 C.±2 D.±45.用蓝色和红色可以混合在一起调配出紫色,小明制作了如图所示的两个转盘,其中一个转盘两部分的圆心角分别是120°和240°,另一个转盘两部分被平分成两等份,分别转动两个转盘,转盘停止后,指针指向的两个区域颜色恰能配成紫色的概率是()A. B. C. D.6.一个由小菱形组成的装饰链,断去了一部分,剩下部分如图所示,则断去部分的小菱形的个数可能是()A.6个 B.7个 C.8个 D.9个7.如图,点P是菱形ABCD的对角线AC上的一个动点,过点P垂直于AC的直线交菱形ABCD的边于M、N两点.设AC=2,BD=1,AP=x,△AMN的面积为y,则y关于x的函数图象大致形状是()A. B. C. D.8.若关于x的一元二次方程的两个实数根分别为,那么抛物线的对称轴为直线()A. B. C. D.9.图1所示矩形ABCD中,BC=x,CD=y,y与x满足的反比例函数关系如图2所示,等腰直角三角形AEF的斜边EF过C点,M为EF的中点,则下列结论正确的是A.当x=3时,EC<EM B.当y=9时,EC>EMC.当x增大时,EC·CF的值增大. D.当y增大时,BE·DF的值不变.10.如图,正方形ABCD中,AD=6,E为AB的中点,将△ADE沿DE翻折得到△FDE,延长EF交BC于G,FH⊥BC,垂足为H,延长DF交BC与点M,连接BF、DG.以下结论:①∠BFD+∠ADE=180°;②△BFM为等腰三角形;③△FHB∽△EAD;④BE=2FM⑤S△BFG=2.6⑥sin∠EGB=;其中正确的个数是()A.3 B.4 C.5 D.611.关于x的一元二次方程x2+bx-6=0的一个根为2,则b的值为()A.-2 B.2 C.-1 D.112.如图,抛物线的开口向上,与轴交点的横坐标分别为和3,则下列说法错误的是()A.对称轴是直线 B.方程的解是,C.当时, D.当,随的增大而增大二、填空题(每题4分,共24分)13.已知圆锥的底面半径为3cm,母线长4cm,则它的侧面积为cm1.14.在Rt△ABC中,∠C=90°,若AC=3,AB=5,则cosB的值为__________.15.若点P(m,-2)与点Q(3,n)关于原点对称,则=______.16.将一块弧长为2π的半圆形铁皮围成一个圆锥的侧面(接头处忽略不计),则围成的圆锥的高为____.17.如图,P为平行四边形ABCD边AD上一点,E、F分别为PB、PC的中点,ΔPEF、ΔPDC、ΔPAB的面积分别为S、S1、S1.若S=1,则S1+S1=.18.小华在距离路灯6米的地方,发现自己在地面上的影长是2米,若小华的身高为1.6米,那么路灯离地面的高度是_____米.三、解答题(共78分)19.(8分)已知:二次函数y=x2+bx+c经过原点,且当x=2时函数有最小值;直线AC解析式为y=kx-4,且与抛物线相交于B、C.(1)求二次函数解析式;(2)若S△AOB∶S△BOC=1:3,求直线AC的解析式;(3)在(2)的条件下,点E为线段BC上一动点(不与B、C重合),过E作x轴的垂线交抛物线于F、交x轴于G,是否存在点E,使△BEF和△CGE相似?若存在,请求出所有点E的坐标;若不存在,请说明理由.20.(8分)某政府工作报告中强调,2019年着重推进乡村振兴战略,做优做响湘莲等特色农产品品牌.小亮调查了一家湘潭特产店两种湘莲礼盒一个月的销售情况,A种湘莲礼盒进价72元/盒,售价120元/盒,B种湘莲礼盒进价40元/盒,售价80元/盒,这两种湘莲礼盒这个月平均每天的销售总额为2800元,平均每天的总利润为1280元.(1)求该店平均每天销售这两种湘莲礼盒各多少盒?(2)小亮调查发现,种湘莲礼盒售价每降3元可多卖1盒.若种湘莲礼盒的售价和销量不变,当种湘莲礼盒降价多少元/盒时,这两种湘莲礼盒平均每天的总利润最大,最大是多少元?21.(8分)某商品的进价为每件20元,售价为每件30元,毎个月可买出180件:如果每件商品的售价每上涨1元,则每个月就会少卖出10件,但每件售价不能高于35元,毎件商品的售价为多少元时,每个月的销售利润将达到1920元?22.(10分)交通安全是社会关注的热点问题,安全隐患主要是超速和超载.某中学八年级数学活动小组的同学进行了测试汽车速度的实验.如图,先在笔直的公路1旁选取一点P,在公路1上确定点O、B,使得PO⊥l,PO=100米,∠PBO=45°.这时,一辆轿车在公路1上由B向A匀速驶来,测得此车从B处行驶到A处所用的时间为3秒,并测得∠APO=60°.此路段限速每小时80千米,试判断此车是否超速?请说明理由(参考数据:=1.41,=1.73).23.(10分)如图,用一段长为30m的篱笆围成一个一边靠墙的矩形菜园(矩形ABCD),墙长为22m,这个矩形的长AB=xm,菜园的面积为Sm2,且AB>AD.(1)求S与x之间的函数关系式,并写出自变量x的取值范围.(2)若要围建的菜园为100m2时,求该莱园的长.(3)当该菜园的长为多少m时,菜园的面积最大?最大面积是多少m2?24.(10分)如图,直线与双曲线在第一象限内交于两点,已知.求的值及直线的解析式;根据函数图象,直接写出不等式的解集.25.(12分)先化简,再从0、2、4、﹣1中选一个你喜欢的数作为x的值代入求值.26.有一个人患了流感,经过两轮传染后共有196个人患了流感,每轮传染中平均一个人传染了几个人?
参考答案一、选择题(每题4分,共48分)1、A【分析】利用顶点式求二次函数的解析式.【详解】设二次函数y=a(x﹣1)1+2,把(0,11)代入可求出a=-1.故二次函数的解析式为y=﹣1(x﹣1)1+2.故选A.考点:待定系数法求二次函数解析式2、D【分析】连接OC,根据圆周角定理求出∠AOC,再根据平行得到∠OCB,利用圆内等腰三角形即可求解.【详解】连接CO,∵∴∠AOC=2∵∴∠OCB=∠AOC=∵OC=BO,∴=∠OCB=故选D.【点睛】此题主要考查圆周角定理,解题的关键是熟知圆的基本性质及圆周角定理的内容.3、C【分析】根据反比例函数y=的图象上点的坐标特征,以及该函数的图象的性质进行分析、解答.【详解】A.反比例函数的图像是双曲线,正确;B.k=2>0,图象位于一、三象限,正确;C.在每一象限内,y的值随x的增大而减小,错误;D.∵ab=ba,∴若点(a,b)在它的图像上,则点(b,a)也在它的图像上,故正确.故选C.【点睛】本题主要考查反比例函数的性质.注意:反比例函数的增减性只指在同一象限内.4、C【分析】把x=4代入原方程得关于a的一元一次方程,从而得解.【详解】把x=4代入方程可得16-12=,解得a=±2,故选C.考点:一元二次方程的根.5、B【解析】列表如下:红红蓝红紫蓝紫紫共有9种情况,其中配成紫色的有3种,所以恰能配成紫色的概率=故选B.6、C【解析】观察图形,两个断开的水平菱形之间最小有2个竖的菱形,之后在此基础上每增加一个也可完整,即可以是2、5、8、11……故选C.点睛:探索规律的题型最关键的是找准规律.7、C【解析】△AMN的面积=AP×MN,通过题干已知条件,用x分别表示出AP、MN,根据所得的函数,利用其图象,可分两种情况解答:(1)0<x≤1;(2)1<x<2;解:(1)当0<x≤1时,如图,在菱形ABCD中,AC=2,BD=1,AO=1,且AC⊥BD;∵MN⊥AC,∴MN∥BD;∴△AMN∽△ABD,∴=,即,=,MN=x;∴y=AP×MN=x2(0<x≤1),∵>0,∴函数图象开口向上;(2)当1<x<2,如图,同理证得,△CDB∽△CNM,=,即=,MN=2-x;∴y=AP×MN=x×(2-x),y=-x2+x;∵-<0,∴函数图象开口向下;综上答案C的图象大致符合.故选C.本题考查了二次函数的图象,考查了学生从图象中读取信息的数形结合能力,体现了分类讨论的思想.8、B【分析】根据方程的两根即可得出抛物线与x轴的两个交点坐标,再利用抛物线的对称性即可得出抛物线的对称轴.【详解】∵方程x2+bx+c=0的两个根分别为x1=-1,x2=2,∴抛物线y=x2+bx+c与x轴的交点坐标为(-1,0)、(2,0),∴抛物线y=x2+bx+c的对称轴为直线x.故选:B.【点睛】本题考查了抛物线与x轴的交点以及二次函数的性质,根据抛物线与x轴的交点横坐标找出抛物线的对称轴是解答本题的关键.9、D【解析】试题分析:由图象可知,反比例函数图象经过(3,3),应用待定系数法可得该反比例函数关系式为,因此,当x=3时,y=3,点C与点M重合,即EC=EM,选项A错误;根据等腰直角三角形的性质,当x=3时,y=3,点C与点M重合时,EM=,当y=9时,,即EC=,所以,EC<EM,选项B错误;根据等腰直角三角形的性质,EC=,CF=,即EC·CF=,为定值,所以不论x如何变化,EC·CF的值不变,选项C错误;根据等腰直角三角形的性质,BE=x,DF=y,所以BE·DF=,为定值,所以不论y如何变化,BE·DF的值不变,选项D正确.故选D.考点:1.反比例函数的图象和性质;2.待定系数法的应用;3.曲线上点的坐标与方程的关系;4.等腰直角三角形的性质;5.勾股定理.10、C【分析】根据正方形的性质、折叠的性质、三角形外角的性质、全等三角形的判定与性质、相似三角形的判定与性质、勾股定理对各个选项依次进行判断、计算,即可得出答案.【详解】解:正方形ABCD中,,E为AB的中点,,,,
沿DE翻折得到,
,,,,
,,
,
又,
,
,∴,又∵,,∴∠BFD+∠ADE=180°,故①正确;∵,,∴又∵,,∴,∴MB=MF,∴△BFM为等腰三角形;故②正确;,,
∴,∴,又∵,∴,∵,,∴,
∽,故正确;
,,,
∵在和中,,
≌,,
设,则,,
在中,由勾股定理得:,
解得:,∴EG=5,,,∴sin∠EGB=,故⑥正确;
∵,,,∴,又∵,∴∽,∴∴BE=2FM,故④正确;∽,且,设,则,
在中,由勾股定理得:,
解得:舍去或,
,故错误;故正确的个数有5个,故选:C.【点睛】本题主要考查了正方形的性质、折叠的性质、全等三角形的判定与性质、相似三角形的判定与性质、平行线的判定、勾股定理、三角函数等知识,本题综合性较强,证明三角形全等和三角形相似是解题的关键.11、D【分析】根据一元二次方程的解的定义,把x=2代入方程得到关于b的一次方程,然后解一次方程即可.【详解】解:把x=2代入程x2+bx-6=0得4+2b-6=0,解得b=1.故选:D.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.12、D【解析】由图象与x轴的交点坐标即可判定下列说法是否正确.【详解】解:∵抛物线与x轴交点的横坐标分别为-1、3,
∴对称轴是直线x==1,方程ax2+bx+c=0的解是x1=-1,x2=3,故A、B正确;
∵当-1<x<3时,抛物线在x轴的下面,
∴y<0,故C正确,
∵抛物线y=ax2+bx+c(a≠0)的开口向上,
∴当x<1,y随x的增大而减小,故D错误;故选:D.【点睛】本题考查抛物线和x轴的交点坐标问题,解题的关键是正确的识别图象.二、填空题(每题4分,共24分)13、11π【解析】试题分析:圆锥的侧面积公式:圆锥的侧面积底面半径×母线.由题意得它的侧面积.考点:圆锥的侧面积点评:本题属于基础应用题,只需学生熟练掌握圆锥的侧面积公式,即可完成.14、【分析】先根据勾股定理求的BC的长,再根据余弦的定义即可求得结果.【详解】由题意得则故答案为:点睛:勾股定理的应用是初中数学极为重要的知识,与各个知识点联系极为容易,因而是中考的热点,在各种题型中均有出现,一般难度不大,需特别注意.15、-1【分析】根据坐标的对称性求出m,n的值,故可求解.【详解】依题意得m=-3,n=2∴=故填:-1.【点睛】此题主要考查代数式求值,解题的关键是熟知直角坐标系的坐标特点.16、【分析】根据侧面展开图,求出圆锥的底面半径和母线长,然后利用勾股定理求得圆锥的高.【详解】如下图,为圆锥的侧面展开图草图:∵侧面展开图是弧长为2π的半圆形∴2π=,其中表示圆锥的母线长解得:圆锥侧面展开图的弧长对应圆锥底面圆的周长∴2π=2πr,其中r表示圆锥底面圆半径解得:r=1∴根据勾股定理,h=故答案为:【点睛】本题考查圆锥侧面展开图,公式比较多,建议通过绘制侧面展开图的草图来分析得出公式.17、2.【详解】∵E、F分别为PB、PC的中点,∴EFBC.∴ΔPEF∽ΔPBC.∴SΔPBC=4SΔPEF=8s.又SΔPBC=S平行四边形ABCD,∴S1+S1=SΔPDC+SΔPAB=S平行四边形ABCD=8s=2.18、6.1【解析】解:设路灯离地面的高度为x米,根据题意得:,解得:x=6.1.故答案为6.1.三、解答题(共78分)19、(1)y=x2-4x;(2)直线AC的解析式为y=x-4;(1)存在,E点坐标为E(1.-1)或E(2,-2).【分析】(1)根据二次函数y=x2+bx+c经过原点可知c=0,当x=2时函数有最小值可知对称轴是x=2,故可求出b,即可求解;(2)连接OB,OC,过点C作CD⊥y轴于D,过点B作BE⊥y轴于E,根据得到,,由EB∥DC,对应线段成比例得到,再联立y=kx-4与y=x2-4x得到方程kx-4=x2-4x,即x2-(k+4)x+4=0,求出x1,x2,根据x1,x2之间的关系得到关于k的方程即可求解;(1)根据(1)(2)求出A,B,C的坐标,设E(m,m-4)(1<m<4)则G(m,0)、F(m,m2-4m),根据题意分∠EFB=90°和∠EBF=90°,分别找到图形特点进行列式求解.【详解】解:(1)∵二次函数y=x2+bx+c经过原点,∴c=0∵当x=2时函数有最小值∴,∴b=-4,c=0,∴y=x2-4x;(2)如图,连接OB,OC,过点C作CD⊥y轴于D,过点B作BE⊥y轴于E,∵∴∴∵EB∥DC∴∵y=kx-4交y=x2-4x于B、C∴kx-4=x2-4x,即x2-(k+4)x+4=0∴,或∵xB<xC∴EB=xB=,DC=xC=∴4•=解得k=-9(不符题意,舍去)或k=1∴k=1∴直线AC的解析式为y=x-4;(1)存在.理由如下:由题意得∠EGC=90°,∵直线AC的解析式为y=x-4∴A(0,-4),C(4,0)联立两函数得,解得或∴B(1,-1)设E(m,m-4)(1<m<4)则G(m,0)、F(m,m2-4m)①如图,当∠EFB=90°,即CG//BF时,△BFE∽△CGE.此时F点纵坐标与B点纵坐标相等.∴F(m,-1)即m2-4m=-1解得m=1(舍去)或m=1∴F(1,-1)故此时E(1,-1)②如图当∠EBF=90°,△FBE∽△CGE∵C(4,0),A(0,4)∴OA=OC∴∠GCE=45°=∠BEF=∠BFE过B点做BH⊥EF,则H(m,-1)∴BH=m-1又∵∠GCE=45°=∠BEF=∠BFE∴△BEF是等腰直角三角形,又BH⊥EF∴EH=HF,EF=2BH∴(m-4)-(m2-4m)=2(m-1)解得m1=1(舍去)m2=2∴E(2,-2)综上,E点坐标为E(1.-1)或E(2,-2).【点睛】此题主要考查二次函数的图像及几何综合,解题的关键是熟知二次函数的图像与性质、平行线分线段成比例、相似三角形及等腰三角形的性质.20、(1)该店平均每天销售礼盒10盒,种礼盒为20盒;(2)当种湘莲礼盒降价9元/盒时,这两种湘莲礼盒平均每天的总利润最大,最大是1307元.【分析】(1)根据题意,可设平均每天销售礼盒盒,种礼盒为盒,列二元一次方程组即可解题(2)根据题意,可设种礼盒降价元/盒,则种礼盒的销售量为:()盒,再列出关系式即可.【详解】解:(1)根据题意,可设平均每天销售礼盒盒,种礼盒为盒,则有,解得故该店平均每天销售礼盒10盒,种礼盒为20盒.(2)设A种湘莲礼盒降价元/盒,利润为元,依题意总利润化简得∵∴当时,取得最大值为1307,故当种湘莲礼盒降价9元/盒时,这两种湘莲礼盒平均每天的总利润最大,最大是1307元.【点睛】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.21、毎件商品的售价为32元【分析】设毎件商品的上涨x元,根据一件的利润×总的件数=总利润,列出方程,再求解,注意把不合题意的解舍去.【详解】解:设毎件商品的上涨x元,根据题意得:(30﹣20+x)(180﹣10x)=1920,解得:x1=2,x2=6(不合题意舍去),则毎件商品的售价为:30+2=32(元),答:毎件商品的售价为32元时,每个月的销售利润将达到1920元.【点睛】此题考查了一元二次方程的解,关键是读懂题意,找出合适的等量关系,列出方程,再求解;注意本题先设每件商品的上涨的钱数更容易做.22、此车超速,理由见解析.【分析】解直角三角形得到AB=OA-OB=73米,求得此车的速度≈86千米/小时>80千米/小时,于是得到结论.【详解】解:此车超速,理由:∵∠POB=90°,∠PBO=45°,∴△POB是等腰直角三角形,∴OB=OP=100米,∵∠APO=60°,∴OA=OP=100≈173米,∴AB=OA﹣OB=73米,∴≈24米/秒≈86千米/小时>80千米/小时,∴此车超速.【点睛】本题考查解直角三角形的应用问题.此题难度适中,解题关键是把实际问题转化为数学问题求解,注意数形结合思想的应用.23、(1)S=﹣x1+13x,10<x≤11;(1)菜园的长为10m;(3)该菜园的长为13m时,菜园的面积最大,最大面积是111.3m1.【分析】(1)根据矩形的面积公式即可得结论;(1)根据题意列一元二次方程即可求解;(3)根据二次函数的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 胃溃疡合并出血护理指南
- 中小学教辅材料管理专项整治工作方案
- 2025汽车维护考试题及答案
- (完整版)外墙岩棉板保温施工方案
- 2025版妊娠糖尿病常见症状及护理指南探讨
- 2025版强直性脊柱炎常见症状及护理指南培训
- 2025版偏头痛常见症状及护理调理建议
- 餐饮激励奋战一线员工
- 经管类跨专业综合实训总结
- UI设计小图标设计规范与应用
- 27-子宫脱垂的围手术期护理
- RFJ05-2009 人防工程设计大样图 结构专业(JG)
- 中学X校园体育艺术科技节活动方案
- GB/T 25413-2010农田地膜残留量限值及测定
- GB/T 13315-1991锻钢冷轧工作辊超声波探伤方法
- 高等化工传递过程原理(研究生)全册配套完整课件3
- 尿素装置工艺流程介绍课件
- 美容院员工劳动合同书
- DB11-T 2006-2022 既有建筑加固改造工程勘察技术标准
- 儿童体格生长指标测量演示教学课件
- 软件运维服务合同
评论
0/150
提交评论