2022年云南省昭通市九年级数学第一学期期末达标检测试题含解析_第1页
2022年云南省昭通市九年级数学第一学期期末达标检测试题含解析_第2页
2022年云南省昭通市九年级数学第一学期期末达标检测试题含解析_第3页
2022年云南省昭通市九年级数学第一学期期末达标检测试题含解析_第4页
2022年云南省昭通市九年级数学第一学期期末达标检测试题含解析_第5页
免费预览已结束,剩余20页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.关于x的一元二次方程有两个不相等的实数根,则实数m的取值范围是()A.且 B. C.且 D.2.一元二次方程的根的情况为()A.有两个相等的实数根 B.有两个不相等的实数根C.只有一个实数根 D.没有实数根3.在下列四种图形变换中,如图图案包含的变换是()A.平移、旋转和轴对称 B.轴对称和平移C.平移和旋转 D.旋转和轴对称4.一元二次方程的一次项系数是()A. B. C. D.5.如图,在平面直角坐标系中,梯形OACB的顶点O是坐标原点,OA边在y轴正半轴上,OB边在x轴正半轴上,且OA∥BC,双曲线y=(x>0)经过AC边的中点,若S梯形OACB=4,则双曲线y=的k值为()A.5 B.4 C.3 D.26.方程的根为()A. B. C.或 D.或7.已知,则下列各式中不正确的是()A. B. C. D.8.下列四个图形中,既是轴对称图形又是中心对称图形的有()A.4个B.3个C.2个D.1个9.如图,一只箱子沿着斜面向上运动,箱高AB=1.3cm,当BC=2.6m时,点B离地面的距离BE=1m,则此时点A离地面的距离是()A.2.2m B.2m C.1.8m D.1.6m10.在比例尺为1:800000的“中国政区”地图上,量得甲市与乙市之间的距离是2.5cm,则这两市之间的实际距离为()km.A.20000000 B.200000 C.200 D.200000011.下列方程中不是一元二次方程的是()A. B. C. D.12.在下列四个图案中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,C,D是抛物线y=(x+1)2﹣5上两点,抛物线的顶点为E,CD∥x轴,四边形ABCD为正方形,AB边经过点E,则正方形ABCD的边长为_____.14.如图,五边形是正五边形,若,则__________.15.已知点是线段的一个黄金分割点,且,,那么__________.16.点关于原点对称的点为_____.17.正方形A1B1C2C1,A2B2C3C2,A3B3C4C3按如图所示的方式放置,点A1、A2、A3和点C1、C2、C3、C4分别在抛物线y=x2和y轴上,若点C1(0,1),则正方形A3B3C4C3的面积是________.18.若扇形的半径为3,圆心角120,为则此扇形的弧长是________.三、解答题(共78分)19.(8分)已知关于的一元二次方程有两个实数根,.(1)求的取值范围:(2)当时,求的值.20.(8分)已知关于的方程(1)求证:无论为何值,方程总有实数根.(2)设,是方程的两个根,记,S的值能为2吗?若能,求出此时的值;若不能,请说明理由.21.(8分)如图,在平面直角坐标系中,双曲线和直线y=kx+b交于A,B两点,点A的坐标为(﹣3,2),BC⊥y轴于点C,且OC=6BC.(1)求双曲线和直线的解析式;(2)直接写出不等式的解集.22.(10分)如图,已知△ABC中,∠ACB=90°,AC=4,BC=3,点M、N分别是边AC、AB上的动点,连接MN,将△AMN沿MN所在直线翻折,翻折后点A的对应点为A′.(1)如图1,若点A′恰好落在边AB上,且AN=AC,求AM的长;(2)如图2,若点A′恰好落在边BC上,且A′N∥AC.①试判断四边形AMA′N的形状并说明理由;②求AM、MN的长;(3)如图3,设线段NM、BC的延长线交于点P,当且时,求CP的长.23.(10分)在平面直角坐标系中,对“隔离直线”给出如下定义:点是图形上的任意一点,点是图形上的任意一点,若存在直线:满足且,则称直线:是图形与的“隔离直线”,如图,直线:是函数的图像与正方形的一条“隔离直线”.

(1)在直线①,②,③,④中,是图函数的图像与正方形的“隔离直线”的为.(2)如图,第一象限的等腰直角三角形的两腰分别与坐标轴平行,直角顶点的坐标是,⊙O的半径为,是否存在与⊙O的“隔离直线”?若存在,求出此“隔离直线”的表达式:若不存在,请说明理由;(3)正方形的一边在轴上,其它三边都在轴的左侧,点是此正方形的中心,若存在直线是函数的图像与正方形的“隔离直线”,请直接写出的取值范围.24.(10分)如图,在平面直角坐标系中,反比例函数的图象过等边三角形的顶点,,点在反比例函数图象上,连接.(1)求反比例函数的表达式;(2)若四边形的面积是,求点的坐标.25.(12分)如图,圆的内接五边形ABCDE中,AD和BE交于点N,AB和EC的延长线交于点M,CD∥BE,BC∥AD,BM=BC=1,点D是的中点.(1)求证:BC=DE;(2)求证:AE是圆的直径;(3)求圆的面积.26.如图,已知二次函数的图象与轴,轴分别交于A三点,A在B的左侧,请求出以下几个问题:(1)求点A的坐标;(2)求函数图象的对称轴;(3)直接写出函数值时,自变量x的取值范围.

参考答案一、选择题(每题4分,共48分)1、C【分析】先根据一元二次方程ax2+bx+c=0(a≠0)的根的判别式的意义得到△>0,即4-4××(-1)>0,则m的取值范围为且.【详解】∵关于x的一元二次方程有两个不相等的实数根,且是一元二次方程.

∴△>0,即4-4××(-1)>0,.

∴且.故选择C.【点睛】本题考查根的判别式和一元二次方程的定义,解题的关键是掌握根的判别式和一元二次方程的定义.2、D【分析】先根据计算判别式的值,然后根据判别式的意义判断方程根的情况.【详解】因为△=,所以方程无实数根.故选:D.【点睛】本题考查了根的判别式:一元二次方程的根与有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.3、D【分析】根据图形的形状沿中间的竖线折叠,两部分可重合,里外各一个顺时针旋转8次,可得答案.【详解】解:图形的形状沿中间的竖线折叠,两部分可重合,得轴对称.里外各一个顺时针旋转8次,得旋转.故选:D.【点睛】本题考查了几何变换的类型,平移是沿直线移动一定距离得到新图形,旋转是绕某个点旋转一定角度得到新图形,轴对称是沿某条直线翻折得到新图形.观察时要紧扣图形变换特点,认真判断.4、C【分析】根据一元二次方程的一般式判断即可.【详解】解:该方程的一次项系数为.故选:【点睛】本题考查的是一元二次方程的项的系数,不是一般式的先化成一般式再判断.5、D【分析】过的中点作轴交轴于,交于,作轴于,如图,先根据“”证明,则,得到,再利用得到,然后根据反比例函数系数的几何意义得,再去绝对值即可得到满足条件的的值.【详解】过的中点作轴交轴于,交于,作轴于,如图,在和中,,(),,,,,,而,.故选:.【点睛】本题考查了反比例函数系数的几何意义:从反比例函数图象上任意一点向轴于轴作垂线,垂线与坐标轴所围成的矩形面积为.6、D【分析】用直接开平方法解方程即可.【详解】x-1=±1x1=2,x2=0故选:D【点睛】本题考查的是用直接开平方法解一元二次方程,关键是要掌握开平方的方法,解题时要注意符号.7、C【分析】依据比例的基本性质,将比例式化为等积式,即可得出结论.【详解】A.由可得,变形正确,不合题意;B.由可得,变形正确,不合题意;C.由可得,变形不正确,符合题意;D.由可得,变形正确,不合题意.故选C.【点睛】本题考查了比例的性质,此题比较简单,解题的关键是掌握比例的变形.8、B【解析】试题分析:A选项既是轴对称图形,也是中心对称图形;B选项中该图形是轴对称图形不是中心对称图形;C选项中既是中心对称图形又是轴对称图形;D选项中是中心对称图形又是轴对称图形.故选B.考点:1.轴对称图形;2.中心对称图形.9、A【分析】先根据勾股定理求出CE,再利用相似三角形的判定与性质进而求出DF、AF的长即可得出AD的长.【详解】解:由题意可得:AD∥EB,则∠CFD=∠AFB=∠CBE,△CDF∽△CEB,∵∠ABF=∠CEB=90°,∠AFB=∠CBE,∴△CBE∽△AFB,∴==,∵BC=2.6m,BE=1m,∴EC=2.4(m),即==,解得:FB=,AF=,∵△CDF∽△CEB,∴=,即解得:DF=,故AD=AF+DF=+=2.2(m),答:此时点A离地面的距离为2.2m.故选:A.【点睛】本题考查了勾股定理、相似三角形的判定和性质,利用勾股定理,正确利用相似三角形的性质得出FD的长是解题的关键.10、C【分析】比例尺=图上距离:实际距离.列出比例式,求解即可得出两地的实际距离.【详解】设这两市之间的实际距离为xcm,则根据比例尺为1:800000,列出比例式:1:800000=2.5:x,解得x=1.1cm=200km故选:C.【点睛】本题考查了比例尺的意义,注意图上距离跟实际距离单位要统一.11、C【分析】根据一元二次方程的定义进行排除选择即可,一元二次方程的关键是方程中只包含一个未知数,且未知数的指数为2.【详解】根据一元二次方程的定义可知含有一个未知数且未知数的指数是2的方程为一元二次方程,所以A,B,D均符合一元二次方程的定义,C选项展开移项整理后不含有未知数,不符合一元二次方程的定义,所以错误,故选C.【点睛】本题考查的是一元二次方程的定义,熟知此定义是解题的关键.12、B【分析】根据轴对称图形与中心对称图形的概念判定即可.【详解】解:A、不是轴对称图形,也是中心对称图形B、是轴对称图形,也是中心对称图形;C、是轴对称图形,也不是中心对称图形;D、不是轴对称图形,也不是中心对称图形.故答案为B.【点睛】本题考查了中心对称图形与轴对称图形的概念,掌握轴对称和中心对称概念的区别是解答本题的关键.二、填空题(每题4分,共24分)13、【分析】首先设AB=CD=AD=BC=a,再根据抛物线解析式可得E点坐标,表示出C点横坐标和纵坐标,进而可得方程﹣5﹣a=﹣5,再解即可.【详解】设AB=CD=AD=BC=a,∵抛物线y=(x+1)2﹣5,∴顶点E(﹣1,﹣5),对称轴为直线x=﹣1,∴C的横坐标为﹣1,D的横坐标为﹣1﹣,∵点C在抛物线y=(x+1)2﹣5上,∴C点纵坐标为(﹣1+1)2﹣5=﹣5,∵E点坐标为(﹣1,﹣5),∴B点纵坐标为﹣5,∵BC=a,∴﹣5﹣a=﹣5,解得:a1=,a2=0(不合题意,舍去),故答案为:.【点睛】此题主要考查二次函数与几何综合,解题的关键是熟知二次函数的图像与性质、正方形的性质.14、72【解析】分析:延长AB交于点F,根据得到∠2=∠3,根据五边形是正五边形得到∠FBC=72°,最后根据三角形的外角等于与它不相邻的两个内角的和即可求出.详解:延长AB交于点F,∵,∴∠2=∠3,∵五边形是正五边形,∴∠ABC=108°,∴∠FBC=72°,∠1-∠2=∠1-∠3=∠FBC=72°故答案为:72°.点睛:此题主要考查了平行线的性质和正五边形的性质,正确把握五边形的性质是解题关键.15、【分析】根据黄金分割的概念得到,把代入计算即可.【详解】∵P是线段AB的黄金分割点,∴故答案为.【点睛】本题考查了黄金分割点的应用,理解黄金分割点的比例并会运算是解题的关键.16、【分析】根据平面直角坐标系中,关于原点的对称点的坐标变化规律,即可得到答案.【详解】∵平面直角坐标系中,关于原点的对称点的横纵坐标分别互为相反数,∴点关于原点对称点的坐标为.故答案是:.【点睛】本题主要考查平面直角坐标系中,关于原点的对称点的坐标变化规律,掌握关于原点的对称点的横纵坐标分别互为相反数,是解题的关键.17、2+.【分析】先根据点C1(0,1)求出A1的坐标,故可得出B1、A2、C2的坐标,由此可得出A2C2的长,可得出B2、C3、A3的坐标,同理即可得出A3C3的长,进而得出结论.【详解】∵点(0,1),四边形,,均是正方形,点、、和点、、、分别在抛物线和y轴上,∴(1,1),(0,2),∴(,2),∴(0,2+),∵点的纵坐标与点相同,点在二次函数的图象上,∴(,),即,∴.故答案为:2+.【点睛】本题考查的是二次函数与几何的综合题,熟知正方形的性质及二次函数图象上点的坐标特点是解答此题的关键.18、【解析】根据弧长公式可得:=2π,故答案为2π.三、解答题(共78分)19、(1);(2)【分析】(1)由条件可知该方程的判别式大于或等于0,可得到关于m的不等式,可求得m的取值范围;

(2)利用根与系数的关系可用m表示出已知等式,可求得m的值.【详解】解:(1)原方程有两个实数根,整理,得:解得:(2),,即解得:又的值为.【点睛】本题考查了根据一元二次方程的根与判别式的关系来确定未知系数的取值范围,以及根据根与系数的关系来确定未知系数的值.20、(1)见解析;(2)时,S的值为2【解析】(1)分两种情况讨论:①当k=1时,方程是一元一次方程,有实数根;②当k≠1时,方程是一元二次方程,所以证明判别式是非负数即可;

(2)由韦达定理得,代入到中,可求得k的值.【详解】解:(1)①当,即k=1时,方程为一元一次方程,∴是方程的一个解.②当时,时,方程为一元二次方程,则,∴方程有两不相等的实数根.综合①②得,无论k为何值,方程总有实数根.(2)S的值能为2,根据根与系数的关系可得∴,即,解得,∵方程有两个根,∴∴应舍去,∴时,S的值为2【点睛】本题考查了根与系数的关系及根的判别式,熟练掌握,是解题的关键.21、(1)双曲线的解析式为,直线的解析式为y=﹣2x﹣4;(2)﹣3<x<0或x>1.【分析】(1)将A坐标代入反比例解析式中求出m的值,确定出反比例解析式,根据OC=6BC,且B在反比例图象上,设B坐标为(a,﹣6a),代入反比例解析式中求出a的值,确定出B坐标,将A与B坐标代入一次函数解析式中求出k与b的值,即可确定出一次函数解析式;(2)根据一次函数与反比例函数的两交点A与B的横坐标,以及0,将x轴分为四个范围,找出反比例图象在一次函数图象上方时x的范围即可.【详解】(1)∵点A(﹣3,2)在双曲线上,∴,解得m=﹣6,∴双曲线的解析式为,∵点B在双曲线上,且OC=6BC,设点B的坐标为(a,﹣6a),∴,解得:a=±1(负值舍去),∴点B的坐标为(1,﹣6),∵直线y=kx+b过点A,B,∴,解得:,∴直线的解析式为y=﹣2x﹣4;(2)根据图象得:不等式的解集为﹣3<x<0或x>1.22、(1);(2)①菱形,理由见解析;②AM=,MN=;(3)1.【分析】(1)利用相似三角形的性质求解即可.(2)①根据邻边相等的平行四边形是菱形证明即可.②连接AA′交MN于O.设AM=MA′=x,由MA′∥AB,可得=,由此构建方程求出x,解直角三角形求出OM即可解决问题.(3)如图3中,作NH⊥BC于H.想办法求出NH,CM,利用相似三角形,确定比例关系,构建方程解决问题即可.【详解】解:(1)如图1中,在Rt△ABC中,∵∠C=90°,AC=4,BC=3,∴AB=,∵∠A=∠A,∠ANM=∠C=90°,∴△ANM∽△ACB,∴=,∵AN=AC∴=,∴AM=.(2)①如图2中,∵NA′∥AC,∴∠AMN=∠MNA′,由翻折可知:MA=MA′,∠AMN=∠NMA′,∴∠MNA′=∠A′MN,∴A′N=A′M,∴AM=A′N,∵AM∥A′N,∴四边形AMA′N是平行四边形,∵MA=MA′,∴四边形AMA′N是菱形.②连接AA′交MN于O.设AM=MA′=x,∵MA′∥AB,∴∴=,∴=,解得x=,∴AM=∴CM=,∴CA′===,∴AA′===,∵四边形AMA′N是菱形,∴AA′⊥MN,OM=ON,OA=OA′=,∴OM===,∴MN=2OM=.(3)如图3中,作NH⊥BC于H.∵NH∥AC,∴△ABC∽△NBH∴==∴==∴NH=,BH=,∴CH=BC﹣BH=3﹣=,∴AM=AC=,∴CM=AC﹣AM=4﹣=,∵CM∥NH,∴△CPM∽△HPN∴=,∴=,∴PC=1.【点睛】本题考查了相似三角形的综合应用,涉及相似三角形的判定与性质、菱形的判定、勾股定理等知识点,综合性较强,难度较大,解题的关键是综合运用上述知识点.23、(1)①④;(2);(3)或【分析】(1)根据的“隔离直线”的定义即可解决问题;(2)存在,连接,求得与垂直且过的直接就是“隔离直线”,据此即可求解;(3)分两种情形正方形在x轴上方以及在x轴下方时,分别求出正方形的一个顶点在直线上时的t的值即可解决问题.【详解】(1)根据的“隔离直线”的定义可知,是图1函数的图象与正方形OABC的“隔离直线”;直线也是图1函数的图象与正方形OABC的“隔离直线”;而与不满足图1函数的图象与正方形OABC的“隔离直线”的条件;

故答案为:①④;(2)存在,理由如下:连接,过点作轴于点,如图,在Rt△DGO中,,∵⊙O的半径为,

∴点D在⊙O上.

过点D作DH⊥OD交y轴于点H,

∴直线DH是⊙O的切线,也是△EDF与⊙O的“隔离直线”.设直线OD的解析式为,将点D(2,1)的坐标代入得,解得:,∵DH⊥OD,∴设直线DH的解析式为,将点D(2,1)的坐标代入得,解得:,∴直线DH的解析式为,∴“隔离直线”的表达式为;(3)如图:由题意点F的坐标为(),当直线经过点F时,,

∴,

∴直线,即图中直线EF,

∵正方形A1B1C1D1的中心M(1,t),

过点作⊥y轴于点G,∵点是正方形的中心,且,∴B1C1,,∴正方形A1B1C1D1的边长为2,

当时,,∴点C1的坐标是(),此时直线EF是函数)的图象与正方形A1B1C1D1的“隔离直线”,∴点的坐标是(-1,2),此时;

当直线与只有一个交点时,,消去y得到,由,可得,

解得:,同理,此时点M的坐标为:(),∴,

根据图象可知:当或时,直线是函数)的图象与正方形A1B1C1D1的“隔离直线”.【点睛】本题是二次函数综合题,考查了二次函数的性质、正方形的性质、一次函数的应用、二元二次方程组.一元二次方程的根的判别式等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会用分类讨论

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论