四川省乐山市第一中学2022年高二数学理测试题含解析_第1页
四川省乐山市第一中学2022年高二数学理测试题含解析_第2页
四川省乐山市第一中学2022年高二数学理测试题含解析_第3页
四川省乐山市第一中学2022年高二数学理测试题含解析_第4页
四川省乐山市第一中学2022年高二数学理测试题含解析_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省乐山市第一中学2022年高二数学理测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.下列函数中,图像的一部分如右图所示的是(

A.

B.中学yjw

C.

D.

参考答案:D略2.sin45°?cos15°+cos225°?sin15°的值为()A. B. C. D.参考答案:C【考点】GQ:两角和与差的正弦函数;GO:运用诱导公式化简求值.【分析】先通过诱导公式cos225°=﹣cos45°,再利用正弦两角和公式化简即可得出答案.【解答】解:sin45°?cos15°+cos225°?sin15°=sin45°?cos15°﹣cos45°?sin15°=sin(45°﹣15°)=sin30°=故答案选C3.椭圆的离心率为

A.

B.

C.

D.参考答案:C略4.抛物线的准线方程为(

参考答案:C5.有一段“三段论”推理是这样的: 对于可导函数,如果,那么是函数的极值点,因为函数在处的导数值,所以,是函数的极值点.以上推理中

A.大前提错误

B.小前提错误

C.推理形式错误

D.结论正确参考答案:A6.从装有2个红球和2个黑球的口袋内任取2个球,那么互斥而不对立的两个事件是(

)(A)至少有一个黑球与都是黑球

(B)至少有一个红球与都是黑球

(C)至少有一个黑球与至少有1个红球(D)恰有1个黑球与恰有2个黑球参考答案:D略7.给出平面区域为图中四边形ABOC内部及其边界,目标函数为,若当且仅当时,目标函数z取最小值,则实数的取值范围是(

)A.

B.

C.

D.参考答案:C略8.已知复数(i为虚数单位),则z在复平面内对应的点位于(

)A.第一象限 B.第二象限 C.第三象限 D.第四象限参考答案:D【分析】将复数化简成形式,则在复平面内对应的点的坐标为,从而得到答案。【详解】由题,则在复平面内对应的点的坐标为,位于第四象限故选D.【点睛】本题考查复数的计算以及几何意义,属于简单题。9.在平行六面体,是上底面的中心,设,,,则=

(

)A.

B.

C.

D.参考答案:B略10.命题p:函数在(1,+∞)上是增函数.命题q:直线在轴上的截距大于0.若为真命题,则实数a的取值范围是(

)A. B. C. D.参考答案:D【分析】根据二次函数的性质,求得命题为真命题时,,命题为真命题时,,再根据为真命题,即都是真命题,即可求解.【详解】由二次函数的性质,可得函数在是增函数,则,即,即命题为真命题时,则;由直线在轴上的截距为,因为截距大于0,即,即命题为真命题时,则;又由为真命题,即都是真命题,所以实数的取值范围是,故选D.【点睛】本题主要考查了二次函数的性质、直线的截距,以及简单的复合命题的真假判定与应用,着重考查了推理与运算能力,属于基础题.二、填空题:本大题共7小题,每小题4分,共28分11.设F为抛物线C:y2=4x的焦点,过点P(﹣1,0)的直线l交抛物线C于两点A,B,点Q为线段AB的中点,若|FQ|=2,则直线l的斜率等于

.参考答案:不存在【考点】直线与圆锥曲线的关系;直线的斜率.【专题】圆锥曲线的定义、性质与方程.【分析】由题意设直线l的方程为my=x+1,联立得到y2﹣4my+4=0,△=16m2﹣16=16(m2﹣1)>0.设A(x1,y1),B(x2,y2),Q(x0,y0).利用根与系数的关系可得y1+y2=4m,利用中点坐标公式可得=2m,x0=my0﹣1=2m2﹣1.Q(2m2﹣1,2m),由抛物线C:y2=4x得焦点F(1,0).再利用两点间的距离公式即可得出m及k,再代入△判断是否成立即可.【解答】解:由题意设直线l的方程为my=x+1,联立得到y2﹣4my+4=0,△=16m2﹣16=16(m2﹣1)>0.设A(x1,y1),B(x2,y2),Q(x0,y0).∴y1+y2=4m,∴=2m,∴x0=my0﹣1=2m2﹣1.∴Q(2m2﹣1,2m),由抛物线C:y2=4x得焦点F(1,0).∵|QF|=2,∴,化为m2=1,解得m=±1,不满足△>0.故满足条件的直线l不存在.故答案为不存在.【点评】本题综合考查了直线与抛物线的位置关系与△的关系、根与系数的关系、中点坐标关系、两点间的距离公式等基础知识,考查了推理能力和计算能力.12.右图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5],样本数据的分组为,,,,,.已知样本中平均气温低于22.5℃的城市个数为11,则样本中平均气温不低于25.5℃的城市个数为______________.参考答案:9

略13.设函数y=lg(﹣x2+4x﹣3)的定义域为A,函数y=,x∈(0,m)的值域为B.(1)当m=2时,求A∩B;(2)若“x∈A”是“x∈B”的必要不充分条件,求实数m的取值范围.参考答案:【考点】必要条件、充分条件与充要条件的判断;对数函数的定义域.【专题】简易逻辑.【分析】(1)先求出A=(1,3),再求出B=(,2),取交集即可;(2)根据:“x∈A”是“x∈B”的必要不充分条件,得不等式解出即可.【解答】解:(1)由﹣x2+4x﹣3>0,解得:1<x<3,∴A=(1,3),又函数y=在区间(0,m)上单调递减,∴y∈(,2),即B=(,2),当m=2时,B=(,2),∴A∩B=(1,2);(2)首先要求m>0,而“x∈A”是“x∈B”的必要不充分条件,∴B?A,即(,2)?(1,3),从而≥1,解得:0<m≤1.【点评】本题考查了充分必要条件,是一道基础题.14.如右图所示,在圆心角为的扇形中,以圆心O作为起点作射线,则使的概率为________参考答案:

略15.若X~=参考答案:16.设过点的直线分别与轴的正半轴、轴的正半轴交于A、B两点,点与点P关于轴对称,O点为坐标原点,若且则P点的轨迹方程是_________.参考答案:略17.已知抛物线C:y2=﹣4x的焦点F,A(﹣1,1),则曲线C上的动点P到点F与点A的距离之和的最小值为.参考答案:2【考点】抛物线的简单性质.【专题】计算题;方程思想;综合法;圆锥曲线的定义、性质与方程.【分析】根据抛物线方程求出焦点坐标和准线方程,再由抛物线的定义知:当P、A和P在准线上的射影点Q三点共线时,这个距离之和最小,即可得出结论.【解答】解:∵抛物线方程为y2=﹣4x,∴2p=4,可得焦点为F(﹣1,0),准线为x=1设P在抛物线准线l上的射影点为Q点,A(﹣1,1)则由抛物线的定义,可知当P、Q、A点三点共线时,点P到点(﹣1,1)的距离与P到该抛物线焦点的距离之和最小,∴最小值为1+1=2.故答案为:2.【点评】本题给出抛物线上的动点,求该点到定点Q和焦点F距离之和的最小值,着重考查了抛物线的定义和简单几何性质等知识,属于中档题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(1)化简:(2)参考答案:(1)-1;(2)1.19.一个盒子中装有5个编号依次为1、2、3、4、5的球,这5个球除号码外完全相同,有放回的连续抽取两次,每次任意地取出一个球。(1)

用列表或画树状图的方法列出所有可能结果。(4分)(2)

求事件A=“取出球的号码之和不小于6”的概率。(5分)(3)设第一次取出的球号码为x,第二次取出的球号码为y,求事件B=“点(x,y)落在直线y=x+1上方”的概率。

(5分)参考答案:解析:(1)所有可能结果数为:25

列表或树状图(略)

(2)取出球的号码之和不小于6的频数为:15

P(A)=15/25=3/5=0.6(3)点(x,y)落在直线y=x+1上方的有:(1,3),(1,4),(1,5),(2,4),(2,5),(3,5);共6种.所以:P(B)=6/25=0.2420.已知p:方程x2+2mx+(m+2)=0有两个不等的正根;q:方程表示焦点在y轴上的双曲线.(1)若q为真命题,求实数m的取值范围;(2)若“p或q”为真,“p且q”为假,求实数m的取值范围.参考答案:【考点】复合命题的真假.【分析】(1)根据双曲线的标准方程进行求解即可.(2)根据复合命题真假关系得到p,q两命题应一真一假,进行求解即可.【解答】解:(1)由已知方程表示焦点在y轴上的双曲线,则,得,得m<﹣3,即q:m<﹣3.(2)若方程x2+2mx+(m+2)=0有两个不等的正根则,解得﹣2<m<﹣1,即p:﹣2<m<﹣1.因p或q为真,所以p、q至少有一个为真.又p且q为假,所以p,q至少有一个为假.因此,p,q两命题应一真一假,当p为真,q为假时,,解得﹣2<m<﹣1;当p为假,q为真时,,解得m<﹣3.综上,﹣2<m<﹣1或m<﹣3.21.(本小题满分12分)设等差数列满足,.(1)求的通项公式(2)求的前项和及使得最大时的值.参考答案:(1)由题意得,解得∴

--------------6分(2)由(1)知

∴当时,取最大值25

--------12分22.已知函数f(x)=xex+5.(1)求f(x)的单调区间;(2)求f(x)在[0,1]上的值域.参考答案:【考点】6B:利用导数研究函数的单调性;6E:利用导数求闭区间上函数的最值.【分析】(1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(2)根据函数的单调性求

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论