




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.如图,在△ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,点P、Q分别是边BC和半圆上的动点,连接PQ,则PQ长的最大值与最小值的和是()A. B. C. D.2.一元二次方程的根的情况是()A.有两个不相等实数根 B.有两个相等实数根 C.没有实数根 D.无法确定3.若∽,相似比为,则与的周长比为()A. B. C. D.4.若将四根木条钉成的矩形木框变形为平行四边形ABCD的形状,并使其面积为矩形面积的一半,则这个平行四边形的一个最小内角为()A.30 B.45 C.60 D.905.若一元二次方程x2+2x+a=0有实数解,则a的取值范围是()A.a<1 B.a≤4 C.a≤1 D.a≥16.下列四个图形中,既是中心对称图形,又是轴对称图形的是()A. B. C. D.7.下列说法正确的是()A.对角线相等的四边形一定是矩形B.任意掷一枚质地均匀的硬币10次,一定有5次正面向上C.如果有一组数据为5,3,6,4,2,那么它的中位数是6D.“用长分别为、12cm、的三条线段可以围成三角形”这一事件是不可能事件8.如图,已知A(-3,3),B(-1,1.5),将线段AB向右平移5个单位长度后,点A、B恰好同时落在反比例函数(x>0)的图象上,则等于()A.3 B.4 C.5 D.69.如图,在中,为上一点,连接、,且、交于点,,则等于()A. B. C. D.10.“汽车行驶到有交通信号灯的路口时,前方恰好遇到绿灯”,这个事件是()A.确定事件 B.随机事件 C.不可能事件 D.必然事件二、填空题(每小题3分,共24分)11.已知线段是线段和的比例中项,且、的长度分别为2和8,则的长度为_________.12.若关于的方程的解为非负数,且关于的不等式组有且仅有5个整数解,则符合条件的所有整数的和是__________.13.因式分解:_______________________.14.某市为提倡居民节约用水,自今年1月1日起调整居民用水价格.图中、分别表示去年、今年水费(元)与用水量()之间的关系.小雨家去年用水量为150,若今年用水量与去年相同,水费将比去年多_____元.15.某“中学生暑期环保小组”的同学,随机调查了“金沙绿岛”10户家庭一周内使用环保方便袋的数量,数据如下(单位:只):6,5,7,8,7,5,8,10,5,9,利用上述数据估计该小区500户家庭一周内需要环保方便袋__________只.16.高为7米的旗杆在水平地面上的影子长为5米,同一时刻测得附近一个建筑物的影子长30米,则此建筑物的高度为_____米.17.如图,矩形EFGH内接于△ABC,且边FG落在BC上.若BC=3,AD=2,EF=EH,那么EH的长为___.18.因式分解:ax3y﹣axy3=_____.三、解答题(共66分)19.(10分)在Rt△ABC中,∠C=90°,∠B=60°,a=2.求b和c.20.(6分)在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.销售量y(千克)…34.83229.628…售价x(元/千克)…22.62425.226…(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?21.(6分)如图,同学们利用所学知识去测量海平面上一个浮标到海岸线的距离.在一笔直的海岸线l上有A、B两个观测站,A在B的正东方向,小宇同学在A处观测得浮标在北偏西60°的方向,小英同学在距点A处60米远的B点测得浮标在北偏西45°的方向,求浮标C到海岸线l的距离(结果精确到0.01m).22.(8分)如图,抛物线y=ax2+bx+6经过点A(﹣2,0),B(4,0)两点,与y轴交于点C,点D是抛物线上一个动点,设点D的横坐标为m(1<m<4)连接BC,DB,DC.(1)求抛物线的函数解析式;(2)△BCD的面积是否存在最大值,若存在,求此时点D的坐标;若不存在,说明理由;(3)在(2)的条件下,若点M是x轴上一动点,点N是抛物线上一动点,试判断是否存在这样的点M,使得以点B,D,M,N为顶点的四边形是平行四边形.若存在,请直接写出点M的坐标;若不存在,请说明理由.23.(8分)如图,海中有一个小岛,它的周围海里内有暗礁,今有货船由西向东航行,开始在岛南偏西的处,往东航行海里后到达该岛南偏西的处后,货船继续向东航行,你认为货船在航行途中有没有触礁的危险.24.(8分)如图,在菱形ABCD中,对角线AC与BD相交于点M,已知BC=5,点E在射线BC上,tan∠DCE=,点P从点B出发,以每秒2个单位沿BD方向向终点D匀速运动,过点P作PQ⊥BD交射线BC于点O,以BP、BQ为邻边构造▱PBQF,设点P的运动时间为t(t>0).(1)tan∠DBE=;(2)求点F落在CD上时t的值;(3)求▱PBQF与△BCD重叠部分面积S与t之间的函数关系式;(4)连接▱PBQF的对角线BF,设BF与PQ交于点N,连接MN,当MN与△ABC的边平行(不重合)或垂直时,直接写出t的值.25.(10分)解下列方程:(1)x2﹣6x+9=0;(2)x2﹣4x=12;(3)3x(2x﹣5)=4x﹣1.26.(10分)尺规作图:如图,已知正方形ABCD,E在BC边上,求作AE上一点P,使△ABE∽△DPA(不写过程,保留作图痕迹).
参考答案一、选择题(每小题3分,共30分)1、C【解析】如图,设⊙O与AC相切于点E,连接OE,作OP1⊥BC垂足为P1交⊙O于Q1,此时垂线段OP1最短,P1Q1最小值为OP1﹣OQ1,求出OP1,如图当Q2在AB边上时,P2与B重合时,P2Q2最大值=5+3=8,由此不难解决问题.【详解】如图,设⊙O与AC相切于点E,连接OE,作OP1⊥BC垂足为P1,交⊙O于Q1,此时垂线段OP1最短,P1Q1最小值为OP1﹣OQ1.∵AB=10,AC=8,BC=6,∴AB2=AC2+BC2,∴∠C=20°.∵∠OP1B=20°,∴OP1∥AC.∵AO=OB,∴P1C=P1B,∴OP1AC=4,∴P1Q1最小值为OP1﹣OQ1=1,如图,当Q2在AB边上时,P2与B重合时,P2Q2经过圆心,经过圆心的弦最长,P2Q2最大值=5+3=8,∴PQ长的最大值与最小值的和是2.故选C.【点睛】本题考查了切线的性质、三角形中位线定理等知识,解题的关键是正确找到点PQ取得最大值、最小值时的位置,属于中考常考题型.2、A【分析】根据方程的系数结合根的判别式即可得出△=49>0,由此即可得出方程有两个不相等的实数根.【详解】解:∵在方程中,△=,∴方程有两个不相等的实数根.故选:A.【点睛】本题考查了根的判别式,熟练掌握“当△>0时,方程有两个不相等的实数根”是解题的关键.3、B【分析】根据相似三角形的性质:周长之比等于相似比解答即可.【详解】解:∵∽,相似比为,∴与的周长比为.故选:B.【点睛】本题考查的是相似三角形的性质,属于应知应会题型,熟练掌握相似三角形的性质是解题关键.4、A【分析】将四根木条钉成的矩形木框变形为平行四边形ABCD的形状,并使其面积为矩形面积的一半,则这个平行四边形的长度与矩形相等的一条边上的高为矩形的一半,即AB=2AE.【详解】解:将四根木条钉成的矩形木框变形为平行四边形ABCD的形状,并使其面积为矩形面积的一半,平行四边形ABCD是原矩形变化而成,∴FG=BC,FH=2AE.又∵HF=AB,∴AB=2AE,在Rt△ABE中,AB=2AE,∠B=30°.故选:A.【点睛】本题考查了矩形各内角为90的性质,平行四边形面积的计算方法,特殊角的三角函数,本题中利用特殊角的正弦函数是解题的关键.5、C【分析】根据一元二次方程的根的判别式列不等式求解.【详解】解:∵方程有实数根∴△=4-4a≥0,解得a≤1故选C.【点睛】本题考查一元二次方根的判别式,熟记公式正确计算是本题的解题关键.6、D【分析】根据轴对称图形与中心对称图形的概念,并结合图形的特点求解.【详解】解:A、不是轴对称图形,是中心对称图形,故选项错误;
B、不是轴对称图形,是中心对称图形,故选项错误;
C、是轴对称图形,不是中心对称图形,故选项错误;
D、是轴对称图形,是中心对称图形,故选项正确.
故选:D.【点睛】本题考查了中心对称图形与轴对称图形的概念.
轴对称图形的关键是寻找对称轴,图形沿对称轴折叠后可重合;
中心对称图形关键是要寻找对称中心,图形旋转180°后与原图重合.7、D【分析】根据矩形的判定定理,数据出现的可能性的大小,中位数的计算方法,不可能事件的定义依次判断即可.【详解】A.对角线相等的平行四边形是矩形,故该项错误;B.任意掷一枚质地均匀的硬币10次,不一定有5次正面向上,故该项错误;C.一组数据为5,3,6,4,2,它的中位数是4,故该项错误;D.“用长分别为、12cm、的三条线段可以围成三角形”这一事件是不可能事件,正确,故选:D.【点睛】此题矩形的判定定理,数据出现的可能性的大小,中位数的计算方法,不可能事件的定义,综合掌握各知识点是解题的关键.8、D【分析】根据点平移规律,得到点A平移后的点的坐标为(2,3),由此计算k值.【详解】∵已知A(-3,3),B(-1,1.5),将线段AB向右平移5个单位长度后,∴点A平移后的点坐标为(2,3),∵点A、B恰好同时落在反比例函数(x>0)的图象上,∴,故选:D.【点睛】此题考查点平移的规律,点沿着x轴左右平移的规律是:左减右加;点沿着y轴上下平移的规律是:上加下减,熟记规律是解题的关键.9、A【分析】根据平行四边形得出,再根据相似三角形的性质即可得出答案.【详解】四边形ABCD为平行四边形故选A.【点睛】本题考查了相似三角形的判定及性质,熟练掌握性质定理是解题的关键.10、B【分析】直接利用随机事件的定义分析得出答案.【详解】解:“汽车行驶到有交通信号灯的路口时,前方恰好遇到绿灯”,这个事件是随机事件.故选B.【点睛】此题主要考查了随机事件,正确把握随机事件的定义是解题关键.二、填空题(每小题3分,共24分)11、4【分析】根据线段是线段和的比例中项,得出,将a,b的值代入即可求解.【详解】解:∵线段是线段和的比例中项,∴即又∵、的长度分别为2和8,∴∴c=4或c=-4(舍去)故答案为:4【点睛】本题考查了比例中项的概念,掌握基本概念,列出等量关系即可解答.12、1【分析】解方程得x=,即a≠1,可得a≤5,a≠1;解不等式组得0<a≤1,综合可得0<a<1,故满足条件的整数a的值为1,2.【详解】解不等式组,可得,∵不等式组有且仅有5个整数解,∴,∴0<a≤1,解分式方程,可得x=,即a≠1又∵分式方程有非负数解,∴x≥0,即≥0,解得a≤5,a≠1∴0<a<1,∴满足条件的整数a的值为1,2,∴满足条件的整数a的值之和是1+2=1,故答案为:1.【点睛】考点:分式方程的解;一元一次不等式组的整数解;含待定字母的不等式(组);综合题,熟练掌握和灵活运用相关知识是解题的关键.13、【分析】先提公因式,再用平方差公式分解.【详解】解:【点睛】本题考查因式分解,掌握因式分解方法是关键.14、1.【分析】根据函数图象中的数据可以求得时,对应的函数解析式,从而可以求得时对应的函数值,由的的图象可以求得时对应的函数值,从而可以计算出题目中所求问题的答案,本题得以解决.【详解】设当时,对应的函数解析式为,,得,即当时,对应的函数解析式为,当时,,由图象可知,去年的水价是(元/),故小雨家去年用水量为150,需要缴费:(元),(元),即小雨家去年用水量为150,若今年用水量与去年相同,水费将比去年多1元,故答案为:1.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.15、3500【分析】先求出10户家庭一周内使用环保方便袋的数量总和,然后求得样本平均数,最后乘以总数500即可解答.【详解】由10户家庭一周内使用环保方便袋的数量可知平均每户一周使用的环保方便袋的数量为则该小区500户家庭一周内需要环保方便袋约为,故答案为3500.【点睛】本题考查的是样本平均数的求法与意义,能够知道平均数的计算方法是解题的关键.16、1【分析】根据同一时刻物体的高度与影长成比例解答即可.【详解】解:设此建筑物的高度为x米,根据题意得:,解得:x=1.故答案为:1.【点睛】本题考查了平行投影,属于基础题型,明确同一时刻物体的高度与影长成比例是解题的关键.17、【详解】解:如图所示:∵四边形EFGH是矩形,∴EH∥BC,∴△AEH∽△ABC,∵AM⊥EH,AD⊥BC,∴,设EH=3x,则有EF=2x,AM=AD﹣EF=2﹣2x,∴,解得:x=,则EH=.故答案为.【点睛】本题考查相似三角形的判定与性质;矩形的性质.18、axy(x+y)(x﹣y)【分析】提取公因式axy后剩余的项满足平方差公式,再运用平方差公式即可;【详解】解:ax3y﹣axy3=axy=axy(x+y)(x﹣y);故答案为:axy(x+y)(x﹣y)【点睛】本题主要考查了提公因式法与公式法的运用,掌握提公因式法,平方差公式是解题的关键.三、解答题(共66分)19、【分析】根据题意画出图形,结合锐角三角函数的定义选择合适的函数即可。【详解】∵∠B=60°,a=2【点睛】本题考查解直角三角形,根据已知条件选择合适的三角函数是解题的关键。20、(1)当天该水果的销售量为2千克;(2)如果某天销售这种水果获利150元,该天水果的售价为3元.【分析】(1)根据表格内的数据,利用待定系数法可求出y与x之间的函数关系式,再代入x=23.5即可求出结论;(2)根据总利润每千克利润销售数量,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【详解】(1)设y与x之间的函数关系式为y=kx+b,将(22.6,34.8)、(24,32)代入y=kx+b,,解得:,∴y与x之间的函数关系式为y=﹣2x+1.当x=23.5时,y=﹣2x+1=2.答:当天该水果的销售量为2千克.(2)根据题意得:(x﹣20)(﹣2x+1)=150,解得:x1=35,x2=3.∵20≤x≤32,∴x=3.答:如果某天销售这种水果获利150元,那么该天水果的售价为3元.【点睛】本题考查了一元二次方程的应用以及一次函数的应用,解题的关键是:(1)根据表格内的数据,利用待定系数法求出一次函数关系式;(2)找准等量关系,正确列出一元二次方程.21、点C到海岸线l的距离约为81.96km.【分析】过点C作CD⊥AB于D,设CD=x米,分别利用在Rt△BCD与Rt△ACD表示出CD,AD,再利用tan∠CAD=tan30°即可求出x,故可求解.【详解】解:如图,过点C作CD⊥AB于D,设CD=x米,由题意得∠CBD=45°,∠CAD=30°,AB=45米在Rt△BCD中,∠CBD=45°,∴BD=CD=x米.在Rt△ACD中,∠CAD=30°,AD=60+x,=tan∠CAD=tan30°,即.解得≈81.96.答:点C到海岸线l的距离约为81.96km.【点睛】本题考查了解直角三角形的应用,做出辅助线,构造直角三角形是解题的关键.22、(1);(2)存在,D的坐标为(2,6);(3)存在这样的点M,使得以点B,D,M,N为顶点的四边形是平行四边形,点M的坐标为:(2,0)或(6,0)或(,0)或(,0).【分析】(1)根据点,利用待定系数法求解即可;(2)先根据函数解析式求出点C、D坐标,再将过点D作y轴的平行线交BC于点E,利用待定系数法求出直线BC的函数解析式,从而得出点E坐标,然后根据得出的面积表达式,最后利用二次函数的性质求出的面积取最大值时m的值,从而可得点D坐标;(3)根据平行四边形的定义分两种情况:BD为平行四边形的边和BD为平行四边形的对角线,然后先分别根据平行四边形的性质求出点N坐标,从而即可求出点M坐标.【详解】(1)∵抛物线经过点∴解得故抛物线的解析式为;(2)的面积存在最大值.求解过程如下:,当时,由题意,设点D坐标为,其中如图1,过点D作y轴的平行线交BC于点E设直线BC的解析式为把点代入得解得∴直线BC的解析式为∴可设点E的坐标为由二次函数的性质可知:当时,随m的增大而增大;当时,随m的增大而减小则当时,取得最大值,最大值为6此时,故的面积存在最大值,此时点D坐标为;(3)存在.理由如下:由平行四边形的定义,分以下两种情况讨论:①当BD是平行四边形的一条边时如图2所示:M、N分别有三个点设点∴点N的纵坐标为绝对值为6即解得(与点D重合,舍去)或或则点的横坐标分别为∴点M坐标为或或即点M坐标为或或②如图3,当BD是平行四边形的对角线时∴此时,点N与C重合,,且点M在点B右侧,即综上,存在这样的点M,使得以点为顶点的四边形是平行四边形.点M坐标为或或或.【点睛】本题考查了利用待定系数法求函数的解析式、二次函数的图象与性质、平行四边形的定义与性质等知识点,较难的是题(3),依据平行四边形的定义,正确分两种情况讨论是解题关键.23、无触礁的危险,理由见解析【分析】作高AD,由题意可得∠ACD=60°,∠ABC=30°,进而得出∠ABC=∠BAC=30°,于是AC=BC=20海里,在Rt△ADC中,利用直角三角形的边角关系,求出AD与15海里比较即可.【详解】解:过点A作ADBC,垂足为D∵∠ABC=∠ACD=∴∠BAC==∠ABC∴BC=AC=20∴=AD=20=10所以货船在航行途中无触礁的危险.【点睛】本题考查了解直角三角形的应用,解一般三角形的问题一般可以转化为解直角三角形的问题,正确作出高线是解题的关键.24、(1);(1)t=;(3)见解析;(4)t的值为或或或1.【分析】(1)如图1中,作DH⊥BE于H.解直角三角形求出BH,DH即可解决问题.(1)如图1中,由PF∥CB,可得,由此构建方程即可解决问题.(3)分三种情形:如图3-1中,当时,重叠部分是平行四边形PBQF.如图3-1中,当时,重叠部分是五边形PBQRT.如图3-3中,当1<t≤1时,重叠部分是四边形PBCT,分别求解即可解决问题.
(4)分四种情形:如图4-1中,当MN∥AB时,设CM交BF于T.如图4-1中,当MN⊥BC时.如图4-3中,当MN⊥AB时.当点P与点D重合时,MN∥BC,分别求解即可.【详解】解:(1)如图1中,作DH⊥BE于H.在Rt△BCD中,∵∠DHC=90°,CD=5,tan∠DCH=,∴DH=4,CH=3,∴BH=BC+CH=5+3=8,∴tan∠DBE===.故答案为.(1)如图1中,∵四边形ABCD是菱形,∴AC⊥BD,∵BC=5,tan∠CBM==,∴CM=,BM=DM=1,∵PF∥CB,∴=,∴=,解得t=.(3)如图3﹣1中,当0<t≤时,重叠部分是平行四边形PBQF,S=PB•PQ=1t•t=10t1.如图3﹣1中,当<t≤1时,重叠部分是五边形PBQRT,S=S平行四边形PBQF﹣S△TRF=10t1﹣•[1t
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 西安职业技术学院《软件设计V:软件工程导论》2023-2024学年第二学期期末试卷
- 南通大学《小学心理辅导设计》2023-2024学年第二学期期末试卷
- 新乡工程学院《大数据挖掘及应用》2023-2024学年第二学期期末试卷
- 宜昌科技职业学院《晶体光学实验》2023-2024学年第二学期期末试卷
- 四川体育职业学院《电工电子》2023-2024学年第二学期期末试卷
- 西安理工大学《虚拟仪器实践》2023-2024学年第二学期期末试卷
- 西安科技大学《实验诊断学见习》2023-2024学年第二学期期末试卷
- 广州美术学院《外科护理学(Ⅱ)》2023-2024学年第二学期期末试卷
- 中华女子学院《电子商务基础与应用》2023-2024学年第二学期期末试卷
- (高清版)DBJ 08-56-1996 建筑幕墙工程技术规程(玻璃幕墙分册)
- 浙江宁波镇海区2025届中考生物对点突破模拟试卷含解析
- 2025届八省联考语文试卷评析及备考策略 课件
- 脱硫塔拆除施工方案
- 北京二十中2025届高考英语二模试卷含解析
- 《高速公路电动汽车清障救援作业规范》
- 五年级下册异分母分数加减法练习200题有答案
- 急性心衰的急救护理与流程
- 我的家乡江西吉安
- 肺栓塞病人的术后护理
- 国开2024年秋《心理健康教育》形考任务1-9答案
- 电力运维管理平台方案设计
评论
0/150
提交评论