2022年甘肃省靖远县靖安中学数学九上期末统考模拟试题含解析_第1页
2022年甘肃省靖远县靖安中学数学九上期末统考模拟试题含解析_第2页
2022年甘肃省靖远县靖安中学数学九上期末统考模拟试题含解析_第3页
2022年甘肃省靖远县靖安中学数学九上期末统考模拟试题含解析_第4页
2022年甘肃省靖远县靖安中学数学九上期末统考模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.下列方程是一元二次方程的是()A.2x﹣3y+1 B.3x+y=z C.x2﹣5x=1 D.x2﹣+2=02.下列多边形一定相似的是()A.两个平行四边形 B.两个矩形C.两个菱形 D.两个正方形3.如图,一圆弧过方格的格点A、B、C,在方格中建立平面直角坐标系,使点A的坐标为(﹣3,2),则该圆弧所在圆心坐标是()A.(0,0) B.(﹣2,1) C.(﹣2,﹣1) D.(0,﹣1)4.某同学在解关于x的方程ax2+bx+c=0时,只抄对了a=1,b=﹣8,解出其中一个根是x=﹣1.他核对时发现所抄的c是原方程的c的相反数,则原方程的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.有一个根是x=1 D.不存在实数根5.若关于x的不等式组无解,则a的取值范围是()A.a≤﹣3 B.a<﹣3 C.a>3 D.a≥36.若x1,x2是一元二次方程5x2+x﹣5=0的两根,则x1+x2的值是()A. B. C.1 D.﹣17.已知2x=3y(y≠0),则下面结论成立的是()A. B.C. D.8.如图,在⊙O中,直径CD⊥弦AB,则下列结论中正确的是A.AC=AB B.∠C=∠BOD C.∠C=∠B D.∠A=∠B0D9.在反比例函数的图象的每个象限内,y随x的增大而增大,则k值可以是()A.-1 B.1 C.2 D.310.按照一定规律排列的个数:-2,4,-8,16,-32,64,….若最后三个数的和为768,则为()A.9 B.10 C.11 D.12二、填空题(每小题3分,共24分)11.若函数是反比例函数,则________.12.如图,在边长为6的等边△ABC中,D为AC上一点,AD=2,P为BD上一点,连接CP,以CP为边,在PC的右侧作等边△CPQ,连接AQ交BD延长线于E,当△CPQ面积最小时,QE=____________.13.在一个不透明的盒子里装有除颜色外其余均相同的2个黄色兵乓球和若干个白色兵乓球,从盒子里随机摸出一个兵乓球,摸到黄色兵乓球的概率为,那么盒子内白色兵乓球的个数为________.14.如果抛物线y=(k﹣2)x2+k的开口向上,那么k的取值范围是_____.15.某学校的初三(1)班,有男生20人,女生23人.现随机抽一名学生,则:抽到一名男生的概率是_____.16.如图,已知圆锥的底面半径为3,高为4,则该圆锥的侧面积为______.17.如图,两个同心圆,大圆半径,,则图中阴影部分的面积是__________.18.归纳“T”字形,用棋子摆成的“T”字形如图所示,按照图①,图②,图③的规律摆下去,摆成第n个“T”字形需要的棋子个数为_______.三、解答题(共66分)19.(10分)已知二次函数.用配方法求该二次函数图象的顶点坐标;在所给坐标系中画出该二次函数的图象,并直接写出当时自变量的取值范围.20.(6分)如图,抛物线经过点A(1,0),B(4,0)与轴交于点C.(1)求抛物线的解析式;(2)如图①,在抛物线的对称轴上是否存在点P,使得四边形PAOC的周长最小?若存在,求出四边形PAOC周长的最小值;若不存在,请说明理由.(3)如图②,点Q是线段OB上一动点,连接BC,在线段BC上是否存在这样的点M,使△CQM为等腰三角形且△BQM为直角三角形?若存在,求M的坐标;若不存在,请说明理由.21.(6分)如图,在平行四边形中,(1)求与的周长之比;(2)若求.22.(8分)重庆八中建校80周年,在体育、艺术、科技等方面各具特色,其中排球选修课是体育特色项目之一.体育组老师为了了解初一年级学生的训练情况,随机抽取了初一年级部分学生进行1分钟垫球测试,并将这些学生的测试成绩(即1分钟的垫球个数,且这些测试成绩都在60~180范围内)分段后给出相应等级,具体为:测试成绩在60~90范围内的记为D级(不包括90),90~120范围内的记为C级(不包括120),120~150范围内的记为B级(不包括150),150~180范围内的记为A级.现将数据整理绘制成如下两幅不完整的统计图,其中在扇形统计图中A级对应的圆心角为90°,请根据图中的信息解答下列问题:(1)在这次测试中,一共抽取了名学生,并补全频数分布直方图:在扇形统计图中,D级对应的圆心角的度数为度.(2)王攀同学在这次测试中1分钟垫球140个.他为了了解自己垫球个数在年级排名的大致情况,他把成绩为B等的全部同学1分钟垫球人数做了统计,其统计结果如表:成绩(个)120125130135140145人数(频数)2831098(垫球个数计数原则:120<垫球个数≤125记为125,125<垫球个数≤130记为130,依此类推)请你估计王攀同学的1分钟垫球个数在年级排名的大致情况.23.(8分)已知抛物线y=x2+bx﹣3经过点A(1,0),顶点为点M.(1)求抛物线的表达式及顶点M的坐标;(2)求∠OAM的正弦值.24.(8分)已知三个顶点的坐标分别.(1)画出;(2)以B为位似中心,将放大到原来的2倍,在右图的网格图中画出放大后的图形△;(3)写出点A的对应点的坐标:___.25.(10分)如图,在△ABC中,AB=AC,∠A=30°,AB=10,以AB为直径的⊙O交BC于点D,交AC于点E,连接DE,过点B作BP平行于DE,交⊙O于点P,连接CP、OP.(1)求证:点D为BC的中点;(2)求AP的长度;(3)求证:CP是⊙O的切线.26.(10分)用一块边长为的正方形薄钢片制作成一个没有盖的长方体盒子,可先在薄钢片的四个角上截去四个相同的小正方形(如图①),然后把四边折合起来(如图②).若做成的盒子的底面积为时,求截去的小正方形的边长.

参考答案一、选择题(每小题3分,共30分)1、C【分析】根据一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为1.逐一判断即可.【详解】解:A、它不是方程,故此选项不符合题意;B、该方程是三元一次方程,故此选项不符合题意;C、是一元二次方程,故此选项符合题意;D、该方程不是整式方程,故此选项不符合题意;故选:C.【点睛】此题主要考查了一元二次方程定义,一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为1.2、D【分析】利用相似多边形的定义:对应边成比例,对应角相等的两个多边形相似,逐一分析各选项可得答案.【详解】解:两个平行四边形,既不满足对应边成比例,也不满足对应角相等,所以A错误,两个矩形,满足对应角相等,但不满足对应边成比例,所以B错误,两个菱形,满足对应边成比例,但不满足对应角相等,所以C错误,两个正方形,既满足对应边成比例,也满足对应角相等,所以D正确,故选D.【点睛】本题考查的是相似多边形的定义与判定,掌握定义法判定多边形相似是解题的关键.3、C【解析】如图:分别作AC与AB的垂直平分线,相交于点O,则点O即是该圆弧所在圆的圆心.∵点A的坐标为(﹣3,2),∴点O的坐标为(﹣2,﹣1).故选C.4、A【分析】直接把已知数据代入进而得出c的值,再解方程根据根的判别式分析即可.【详解】∵x=﹣1为方程x2﹣8x﹣c=0的根,1+8﹣c=0,解得c=9,∴原方程为x2-8x+9=0,∵=(﹣8)2-4×9>0,∴方程有两个不相等的实数根.故选:A.【点睛】本题考查一元二次方程的解、一元二次方程根的判别式,解题的关键是掌握一元二次方程根的判别式,对于一元二次方程,根的情况由来判别,当>0时,方程有两个不相等的实数根,当=0时,方程有两个相等的实数根,当<0时,方程没有实数根.5、A【解析】利用不等式组取解集的方法,根据不等式组无解求出a的取值范围即可.【详解】∵不等式组无解,∴a﹣4≥3a+2,解得:a≤﹣3,故选A.【点睛】本题考查了一元一次不等式组的解集,熟知一元一次不等式组的解集的确定方法“同大取大、同小取小、大小小大中间找、大大小小无处找”是解题的关键.6、B【分析】利用计算即可求解.【详解】根据题意得x1+x2=﹣.故选:B.【点睛】本题考查一元二次方程根与系数的关系,解题的关键是熟知一元二次方程两根之和与两根之积与系数之间的关系.7、A【解析】试题解析:A、两边都除以2y,得,故A符合题意;B、两边除以不同的整式,故B不符合题意;C、两边都除以2y,得,故C不符合题意;D、两边除以不同的整式,故D不符合题意;故选A.8、B【解析】先利用垂径定理得到弧AD=弧BD,然后根据圆周角定理得到∠C=∠BOD,从而可对各选项进行判断.【详解】解:∵直径CD⊥弦AB,∴弧AD=弧BD,∴∠C=∠BOD.故选B.【点睛】本题考查了垂径定理和圆周角定理,垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.9、A【解析】因为的图象,在每个象限内,y的值随x值的增大而增大,所以k−1<0,即k<1.故选A.10、B【分析】观察得出第n个数为(-2)n,根据最后三个数的和为768,列出方程,求解即可.【详解】由题意,得第n个数为(-2)n,那么(-2)n-2+(-2)n-1+(-2)n=768,当n为偶数:整理得出:3×2n-2=768,解得:n=10;当n为奇数:整理得出:-3×2n-2=768,则求不出整数.故选B.二、填空题(每小题3分,共24分)11、-1【分析】根据反比例函数的定义可求出m的值.【详解】解:∵函数是反比例函数∴解得,.故答案为:-1.【点睛】本题考查的知识点是反比例函数的定义,比较基础,易于掌握.12、【分析】如图,过点D作DF⊥BC于F,由“SAS”可证△ACQ≌△BCP,可得AQ=BP,∠CAQ=∠CBP,由直角三角形的性质和勾股定理可求BD的长,由锐角三角函数可求BP的长,由相似三角形的性质可求AE的长,即可求解.【详解】如图,过点D作DF⊥BC于F,∵△ABC,△PQC是等边三角形,∴BC=AC,PC=CQ,∠BCA=∠PCQ=60°,∴∠BCP=∠ACQ,且AC=BC,CQ=PC,∴△ACQ≌△BCP(SAS)∴AQ=BP,∠CAQ=∠CBP,∵AC=6,AD=2,∴CD=4,∵∠ACB=60°,DF⊥BC,∴∠CDF=30°,∴CF=CD=2,DF=CF÷tan30°=CF=2,∴BF=4,∴BD===2,∵△CPQ是等边三角形,∴S△CPQ=CP2,∴当CP⊥BD时,△CPQ面积最小,∴cos∠CBD=,∴,∴BP=,∴AQ=BP=,∵∠CAQ=∠CBP,∠ADE=∠BDC,∴△ADE∽△BDC,∴,∴,∴AE=,∴QE=AQ−AE=.故答案为;.【点睛】本题考查了全等三角形的判定和性质,等边三角形的性质,锐角三角函数,相似三角形的判定和性质,直角三角形的性质,勾股定理等知识,求出BP的长是本题的关键.13、1【分析】先求出盒子内乒乓球的总个数,然后用总个数减去黄色兵乓球个数得到白色乒乓球的个数.【详解】解:盒子内乒乓球的总个数为2÷=6(个),白色兵乓球的个数6−2=1(个),故答案为:1.【点睛】此题主要考查了概率公式,关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.14、k>2【解析】根据二次函数的性质可知,当抛物线开口向上时,二次项系数k﹣2>1.【详解】因为抛物线y=(k﹣2)x2+k的开口向上,所以k﹣2>1,即k>2,故答案为k>2.【点睛】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.15、【分析】随机抽取一名学生总共有20+23=43种情况,其中是男生的有20种情况.利用概率公式进行求解即可.【详解】解:一共有20+23=43人,即共有43种情况,∴抽到一名男生的概率是.【点睛】本题考查了用列举法求概率,属于简单题,熟悉概率的计算公式是解题关键.16、【分析】根据圆锥的底面半径为3,高为4可得圆锥的母线长,根据圆锥的侧面积S=即可得答案.【详解】∵圆锥的底面半径为3,高为4,∴圆锥的母线长为=5,∴该圆锥的侧面积为:π×3×5=15π,故答案为:15π【点睛】本题考查求圆锥的侧面积,如果圆锥的底面半径为r,母线长为l,则圆锥的侧面积S=;熟练掌握圆锥的侧面积公式是解题关键.17、【分析】根据题意可知,阴影部分的面积等于半径为4cm,圆心角为60°的扇形面积.【详解】∵,,∴阴影部分的面积为扇形OBC的面积:,故答案为:.【点睛】本题主要考查了阴影部分面积的求法,熟练掌握扇形的面积公式是解决本题的关键.18、3n+1.【分析】根据题意和图形,可以发现图形中棋子的变化规律,从而可以求得第n个“T”字形需要的棋子个数.【详解】解:由图可得,

图①中棋子的个数为:3+1=5,

图②中棋子的个数为:5+3=8,

图③中棋子的个数为:7+4=11,

……

则第n个“T”字形需要的棋子个数为:(1n+1)+(n+1)=3n+1,

故答案为3n+1.【点睛】本题考查图形的变化类,解答本题的关键是明确题意,发现题目中棋子的变化规律,利用数形结合的思想解答.三、解答题(共66分)19、(1)顶点坐标为;(2)图象见解析,由图象得当时.【分析】(1)用配方法将函数一般式转化为顶点式即可;(2)采用列表描点法画出二次函数图象即可,根据函数图象,即可判定当时自变量的取值范围.【详解】..顶点坐标为列表:············图象如图所示由图象得当时.【点睛】此题主要考查二次函数顶点式以及图象的性质,熟练掌握,即可解题.20、(1);(2)9;(3)存在点M的坐标为()或()使△CQM为等腰三角形且△BQM为直角三角形【分析】(1)根据抛物线经过A、B两点,带入解析式,即可求得a、b的值.(2)根据PA=PB,要求四边形PAOC的周长最小,只要P、B、C三点在同一直线上,因此很容易计算出最小周长.(3)首先根据△BQM为直角三角形,便可分为两种情况QM⊥BC和QM⊥BO,再结合△QBM∽△CBO,根据相似比例便可求解.【详解】解:(1)将点A(1,0),B(4,0)代入抛物线中,得:解得:所以抛物线的解析式为.(2)由(1)可知,抛物线的对称轴为直线.连接BC,交抛物线的对称轴为点P,此时四边形PAOC的周长最小,最小值为OA+OC+BC=1+3+5=9.(3)当QM⊥BC时,易证△QBM∽△CBO所以,又因为△CQM为等腰三角形,所以QM=CM.设CM=x,则BM=5-x所以所以.所以QM=CM=,BM=5-x=,所以BM:CM=4:3.过点M作NM⊥OB于N,则MN//OC,所以,即,所以,所以点M的坐标为()当QM⊥BO时,则MQ//OC,所以,即设QM=3t,则BQ=4t,又因为△CQM为等腰三角形,所以QM=CM=3t,BM=5-3t又因为QM2+QB2=BM2,所以(3t)2+(4t)2=(5-3t)2,解得MQ=3t=,,所以点M的坐标为().综上所述,存在点M的坐标为()或()使△CQM为等腰三角形且△BQM为直角三角形【点睛】本题是一道二次函数的综合型题目,难度系数较高,关键在于根据图形化简问题,这道题涉及到一种分类讨论的思想,这是这道题的难点所在,分类讨论思想的关键在于根据直角三角形的直角进行分类的.21、(1)与周长的比等于相似比等于;(2).【分析】(1)根据平行四边形对边平行,得到两个三角形相似,根据两个三角形相似,得到△AEF与△CDF的周长比等于对应边长之比,做出两个三角形的边长之比,可得△AEF与△CDF的周长比;(2)利用两个三角形的面积之比等于边长之比的平方,利用两个三角形的边长之比,根据△AEF的面积等于6cm2,得到要求的三角形的面积.【详解】解:由得,又是平行四边形,由得所以与周长的比等于相似比等于.由由解得.【点睛】本题考查三角形相似的性质,两个三角形相似,对应的高线,中线和角平分线之比等于边长之比,两个三角形的面积之比等于边长比的平方,这种性质用的比较多.22、(1)100,54;(2)王攀同学的1分钟垫球个数在年级排名是34名到42名之间【分析】(1)根据A级的人数和在扇形统计图中的度数可以求得本次抽查的学生人数,从而可以计算出D级的人数,进而可以将频数分布直方图补充完整,再根据统计图中的数据可以求得D级对应的圆心角的度数;(2)根据统计图中的数据和表格中的数据可以估计王攀同学的1分钟垫球个数在年级排名的大致情况.【详解】(1)在这次测试中,一共抽取了25÷=100名学生,D级的人数为:100﹣20﹣40﹣25=15,补全的频数分布直方图如图所示:D级对应的圆心角的度数为:360°×=54°,故答案为:100,54;(2)由统计图可知,A级有25人,由表格可知,垫球145个的8人,垫球140个9人,25+8=33,33+9=42,∴王攀同学的1分钟垫球个数在年级排名是34名到42名之间.【点睛】本题主要考查扇形统计图和频数直方图的综合应用,理解扇形统计图和频数直方图中数据的意义,是解题的关键.23、(1)M的坐标为(﹣1,﹣4);(2)25【解析】(1)把A坐标代入抛物线解析式求出b的值,确定出抛物线表达式,并求出顶点坐标即可;(2)根据(1)确定出抛物线对称轴,求出抛物线与x轴的交点B坐标,根据题意得到三角形AMB为直角三角形,由MB与AB的长,利用勾股定理求出AM的长,再利用锐角三角函数定义求出所求即可.【详解】解:(1)由题意,得1+b﹣3=0,解这个方程,得,b=2,所以,这个抛物线的表达式是y=x2+2x﹣3,所以y=(x+1)2﹣4,则顶点M的坐标为(﹣1,﹣4);(2)由(1)得:这个抛物线的对称轴是直线x=﹣1,设直线x=-1与x轴的交点为点B,则点B的坐标为(﹣1,0),且∠MBA=90°,在Rt△ABM中,MB=4,AB=2,由勾股定理得:AM2=MB2+AB2=16+4=20,即AM=25,所以sin∠OAM=BMAM=2【点睛】此题考查了待定系数法求二次函数解析式,二次函数的性质,二次函数图象上点的坐标特征,以及解直角三角形,熟练掌握待定系数法是解本题的关键.24、(1)见解析;(2)见解析;(3)(−3,1)【分析】(1)根据A(0,2)、B(3,3)、C(2,1).在坐标系中找出连接即可;(2)根据把原三角形的三边对应的缩小或放大一定的比例即可得到对应的相似图形,在改变的过程中保持形状不变(大小可变)即可得出答案.(3)利用(2)中图象,直接得出答案.【详解】(1)根据A(0,2)、B(3,3)、C(2,1).在坐标系中找出连接即可;(2)把原三角形的三边对应的缩小或放大一定的比例即可得到对应的相似图形。所画图形如下所示:它的三个对应顶点的坐标分别是:(−3,1)、(3,3)、(1,−1).(3)利用(2)中图象,直接得出答案.故答案为:(−3,1)【点睛】此题考查坐标与图形性质,位似变换,解题关键在于掌握作图法则.25、(1)BD=DC;(2)1;(3)详见解析.【分析】(1)连接AD,由圆周角定理可知∠ADB=90°,证得结论;

(2)根据等腰三角形的性质得到AD平分∠BAC,即∠BAD=∠CAD,可得,则BD=DE,所以BD=DE=DC,得到∠DEC=∠DCE,在等腰△ABC中可计算出∠ABC=71°,故∠DEC=71°,再由三角形内角和定理得出

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论