版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2020届高考导航系列试题
高三上学期理科数学单元测试(1)
[新课标人教版]命题范围
会合(必修1第一章)与常用逻辑(选修2-1第一章)
注意事项:
1.本试题分为第Ⅰ卷和第Ⅱ卷两部分,满分150分,考试时间为120分钟。2.答第Ⅰ卷前务必然自己的姓名、考号、考试科目涂写在答题卡上。考试结束,试题和答题卡一并回收。3.第Ⅰ卷每题选出答案后,都必然用2B铅笔把答题卡上对应题目的答案标号
(ABCD
)
涂黑,如需变动,必然先用橡皮擦洁净,再改涂其余答案。
第Ⅰ卷(选择题,共60分)
一、选择题:在每题给出的四个选项中,只有一项为哪一项符合题目要求的,请把正确答案的代号填在题后的括号内(本大题共12个小题,每题5分,共60分)。.会合A0,2,a,B1,a2若AUB0,1,2,4,16则a的值为()1,,A.0B.1C.2D.42.命题“对随意的xR,x3x21≤0”的否认是()A.不存在xR,x3x21≤0B.存在xR,x3x21≤0C.存在xR,x3x210D.对随意的xR,x3x2103.会合A、B各有2个元素,AB中有一个元素,若会合C同时知足①CAB,②CAB,则知足条件的会合C的个数是()A.1B.2C.3D.4
4.已知全集
图是
U=R,则正确表示会合
M={
-1,0,1}
和
N={x|x
+x=0}
关系的韦恩(Venn)
()
5.设a,bR,会合{1,ab,a}ba(){0,,b},则baA.1B.1C.2D.26.有以下四个命题,此中真命题有:()①“若xy0,则x,y互为相反数”的抗命题;②“全等三角形的面积相等”的否命题;③“若q1,则x22xq0有实根”的抗命题;④“不等边三角形的三个内角相等”的逆否命题;A.①②B.②③C.①③D.③④7.已知会合A{x|ylg(2xx2)},B{y|y2x,x0},R是实数集,则(CRB)A=()A.0,1B.0,1C.,0D.以上都不对8.“2k(kZ)”是“cos21()”的62A.充分而不用要条件B.必需而不充分条件C.充分必需条件D.既不充分也不用要条件9.设全集UR,A{x|2x(x3)1},B{x|yln(1x)},则右图中暗影部分表示的会合为()A.{x|x>0}B.{x|3x0}C.{x|3x1}D.{x|x1}10.若AxZ222x8BxRlogxx1,则A(CRB)的元素个数为()A.0B.1C.2D.311.设会合A{x||x2|2,xR},B{y|yx2,1x2},则CR(A∩B)等于()A.RB.{x|xR且x0}C.{0}D.012.设会合M{x|xm0},N{y|y2x,xR},若MN,则实数m的取值范围是()A.m0B.m>0C.m≤0D.m<0
第Ⅱ卷(非选择题,共90分)
二、填空题:请把答案填在题中横线上(本大题共4个小题,每题4分,共16分)。
13.若会合M={0,l,2},N={(x,y)|x-2y+1≥0且x-2y-1≤0,x,y∈M},则N中元
素的个数为;14.设p:x2-x-20>0,q:1x2<0,则p是q的条件.x215.已知会合A={x,y2,x+y,0},若A=B,则x2020+y2100=______,,1},B={xx16.已知会合Ax|ax10,Bx|x2x560,若AB,则由实数a构成的会合C为。三、解答题:解答应写出文字说明、证明过程或演算步骤(本大题共6个大题,共74分)。17.(12分)已知会合
(1)当m=3时,求
A{x|61,xR},B{x|x22xm0}x1
CUB;
(2)若AB{x|1x4},务实数m的值.
1812分)已知函数f(x)(k0),求使得f(xk)1建立的x的会合.(k1x
2x2a,(x2a)19.(12分)已知a>0,设命题p:函数y=ax在R上单一递减,q:设函数y=,2a,(x2a)函数y>1恒建立,若p∧q为假,p∨q为真,求a的取值范围
20.(12分)会合A={1,3,a},B={1,a2},问能否存在这样的实数a使得BA且,A∩B={1,a}?
若存在,求出实数a的值;若不存在,说明原因
21.(12分)会合M{(x,y)|xcos,ysin,0},N{(x,y)|yxb}且
MN
,求b的范围。
22.(14分)设会合S中的元素为实数,且知足条件:①S内不含1;②若aS,则必有1S。a
I)证明:若2S,则S中必存在其余两个元素,并求出这两个元素。
II)会合S中的元素能否有且只有一个?为何?
参照答案
一、选择题
1.D.解析:∵A0,2,a,B1,a2,AUB0,1,2,4,16∴a216∴a4,应选D.a4【命题立意】:此题察看了会合的并集运算,并用察看法获得相对应的元素,进而求得答案,此题属于简单题.2.C;解析:此题察看简单逻辑原命题与其否认之间的变换,注意该原命题是全称命题,应选C;
3.D;解析:察看了会合C的全部可能性,能够只取1个元素(公共元素),也能够取两
个元素(为会合A、B),也可取三个元素。
4.B;解析:由N={x|x+x=0}得,选B.
5.C;解析:由已知得a+b=0;b=1,∴a=-1应选C.
6.B;解析:该题波及问题较为全面,代表高考方向,最好用除去法较为省力
7.B;解析:由2xx20,得x(x2)00x2,故Ax|0x2
由x0,得2x1,故By|y1,(CRB)y|y1|,
则,(CRB)Ax|0x1,即0,18.A;解析:此题主要察看三角函数的基本看法、简单逻辑中充要条件的判断.属于基础知
识、基本运算的察看.
当2k(kZ)时,cos2cos4kcos31,632反之,当cos21时,有22kkkZ,236或,故应选A.369.C;解析:察看文氏图,该题求的是两个会合的交集,再行求解。
10.C;解析:借助指数函数和对数函数为载体,注意到会合A中为整数集。
11.B;解析:联合函数的值域和绝对值不等式察看了会合运算;
12.B;解析:含参数问题的办理要联合会合的正确运算;
二、填空题
13.4;解析:较为复杂的会合运算,兼备第一个会合,第二个会合中参数在第一个会合中
取值;
14.充分不用要;解析:解得两个不等式的解集,判断包括关系;会合的真子集是会合充分不用要条件;
y15.-1;解析:依据会合相等的定义知x=0或=0;x当x=0时y没心义,因此只好y=0;得y=0,代入A、B得A={x,0,1},B={x2,x,0},又∵A=B,xx
∴x2=1,∴x=1或x=-1,当x=1时,A={1,0,1}B={1,1,0},不符合会合元素的互异性,故舍
去;当x=-1时,A={-1,0,1},B={1,-1,0},∴A=B,符合题意。
∴x2020+y2100=(-1)2020+02100=-1
16.解析:由于A1,B7,8,AB,a因此17或18,aa即a1或a1,C0,1,1;7878三、解答题
17.解:A{x|1x5}(1)当m3时,B{x|1x3}则={x|x1或x3}A={x|3x5}6分(2)AB{x|1x4},
有4224m0解得m8⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12分此时B{x|2x4},符合题意.18.f(xk1,k)11x1xk0(x1)(xk)0,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分xk当k1,即k1,所求x的会合{x|1xk};⋯⋯⋯⋯⋯8分当k1,即k1,所求x的会合;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分当k1,即1k0,所求x的会合{x|kx1}。⋯⋯⋯⋯12分19.解析:若p是真命,0<a<1,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分若q是真命,函数y>1恒建立,即函数y的最小大于1,而函数y的最小2a,11⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分只要2a>1,∴a>,∴q真命a>,22又∵p∨q真,p∧q假,∴p与q一真一假.⋯⋯⋯⋯⋯8分若p真q假,0<a≤1;若p假q真,a≥1.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分2故a的取范0<a≤1或a≥1⋯⋯⋯⋯12分220.解析:由A={1,3,a},B={1,a2},BA得,a2=3或a2=a.⋯⋯⋯⋯⋯⋯⋯3分当a2=3,a=3,此A∩B≠{1,a};⋯⋯⋯⋯⋯⋯⋯6分当a2=a,a=0或a=1,a=0,A∩B={1,0};a=1,A∩B≠{1,a}.⋯⋯⋯⋯⋯⋯10分上所述,存在的数a=0,使得BA,且A∩B={1,a}.⋯⋯⋯⋯12分21.会合M着半个位(不含端点),会合N着斜率1的一平行,使MN,即两条曲有交点,⋯⋯⋯⋯⋯⋯⋯4分如5。
⋯⋯⋯⋯⋯⋯⋯8分
5
当直与半相切,b2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年抖音电商运营盈利模式创新调研
- 浦东新区惠南镇同治村二期高标准农田水利工程方案汇报
- 从基因组学到临床:小细胞肺癌个体化治疗路径
- 临终镇静的知情同意:患者意愿与家属诉求
- 临床路径实施中的医护协作模式创新
- 临床路径优化甲亢药物治疗的监测频率
- 临床技能递进培养中的情境教学法应用
- 临床技能培训资源整合与共享体系
- 临床技能培训中的教学精准化帮扶
- 临床技能培训中的教学科学化实践
- 2026年七年级历史上册期末考试试卷及答案(共六套)
- 资产评估期末试题及答案
- 2025年内科医师定期考核模拟试题及答案
- 郑州大学《大学英语》2023-2024学年第一学期期末试卷
- 校企合作工作室规范管理手册
- 2025年农业农村部科技发展中心招聘备考题库及1套参考答案详解
- 学堂在线 雨课堂 学堂云 研究生学术与职业素养讲座 章节测试答案
- 博士课程-中国马克思主义与当代(2024年修)习题答案
- GB/T 2424.25-2000电工电子产品环境试验第3部分:试验导则地震试验方法
- GB/T 18341-2021地质矿产勘查测量规范
- FZ/T 24022-2015精梳水洗毛织品
评论
0/150
提交评论