付费下载
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省淄博市周村区王村镇中学2019-2020学年高二数学文上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.“方程+=1表示焦点在y轴上的椭圆”的充分不必要条件是(
)A.
B.
C.
D.参考答案:A2.如果直线ax+2y+2=0与直线3x﹣y﹣2=0平行,则a=()A.﹣3 B.﹣ C.﹣6 D.参考答案:C【考点】直线的一般式方程与直线的平行关系.【分析】由于直线ax+2y+2=0与直线3x﹣y﹣2=0平行,故它们的斜率相等,故有﹣=3,由此解得a的值.【解答】解:由于直线ax+2y+2=0与直线3x﹣y﹣2=0平行,故它们的斜率相等,故有﹣=3,解得a=﹣6,故选C.3.抛物线y2=2px(p>0)的焦点为F,已知A,B为抛物线上的两个动点,且满足∠AFB=120°,过弦AB的中点M作抛物线准线的垂线MN,垂足为N,则的最大值为()A.2 B. C.1 D.参考答案:D【考点】抛物线的简单性质.【分析】设|AF|=a,|BF|=b,连接AF、BF.由抛物线定义得2|MN|=a+b,由余弦定理可得|AB|2=(a+b)2﹣ab,进而根据基本不等式,求得|AB|的取值范围,从而得到本题答案.【解答】解:设|AF|=a,|BF|=b,连接AF、BF,由抛物线定义,得|AF|=|AQ|,|BF|=|BP|,在梯形ABPQ中,2|MN|=|AQ|+|BP|=a+b.由余弦定理得,|AB|2=a2+b2﹣2abcos120°=a2+b2+ab,配方得,|AB|2=(a+b)2﹣ab,又∵ab≤()2,∴(a+b)2﹣ab≥(a+b)2﹣(a+b)2=(a+b)2得到|AB|≥(a+b).所以≤,即的最大值为.故选:D4.在区间[﹣3,3]上任取一个数a,则圆C1:x2+y2+4x﹣5=0与圆C2:(x﹣a)2+y2=1有公共点的概率为(
) A. B. C. D.参考答案:B考点:几何概型.专题:计算题;概率与统计.分析:利用圆C1:x2+y2+4x﹣5=0与圆C2:(x﹣a)2+y2=1有公共点,可得0≤a≤2或﹣6≤a≤﹣4,结合在区间[﹣3,3]上任取一个数a,即可求出概率.解答: 解:圆C1:x2+y2+4x﹣5=0可化为(x+2)2+y2=9,圆心为(﹣2,0),半径为3,圆C2:(x﹣a)2+y2=1,圆心为(a,0),半径为1,∵圆C1:x2+y2+4x﹣5=0与圆C2:(x﹣a)2+y2=1有公共点,∴2≤|a+2|≤4,∴0≤a≤2或﹣6≤a≤﹣4,∵在区间[﹣3,3]上任取一个数a,∴0≤a≤2,∴所求概率为=.故选:B.点评:本题主要考查了几何概型的概率,以及圆与圆有公共点的性质,解题的关键弄清概率类型,同时考查了计算能力,属于基础题.5.曲线f(x)=x3-2x+1在点(1,0)处的切线方程为(
)A.y=-x+1 B.y=x-1 C.y=2x-2 D.y=-2x+2参考答案:B6.函数是A.最小正周期为的奇函数
B.最小正周期为的偶函数C.最小正周期为的奇函数
D.最小正周期为的偶函数参考答案:D7.某校开设10门课程供学生选修,其中A,B,C三门由于上课时间相同,至多选一门,学校规定每位学生选修三门,则每位学生不同的选修方案种数是()A.70 B.98 C.108 D.120参考答案:B【考点】排列、组合的实际应用.【分析】根据题意,由于A,B,C三门中至多选一门,则分2种情况讨论:①、从A,B,C三门中选出1门,其余7门中选出2门,②、从除A,B,C三门之外的7门中选出3门,分别求出每一种情况的选法数目,由加法原理计算可得答案.【解答】解:根据题意,分2种情况讨论:①、从A,B,C三门中选出1门,其余7门中选出2门,有C31C72=63种选法,②、从除A,B,C三门之外的7门中选出3门,有C73=35种选法;故不同的选法有63+35=98种;故选:B.8.如果一组数x1,x2,…,xn的平均数是,方差是s2,则另一组数x1+,x2+,…,xn+的平均数和方差分别是()A.x,s2
B.x+,s2C.x+,3s2 D.x+,3s2+2s+2参考答案:C【考点】众数、中位数、平均数;极差、方差与标准差.【分析】根据一组数是前一组数x1,x2,…,xn扩大倍后,再增大,故其中平均数也要扩大倍后,再增大,而其方差扩大()2倍,由此不难得到答案.【解答】解:∵x1,x2,…,xn的平均数是,方差是s2,∴的平均数为,的方差为3s2故选C9.对实数和,定义运算“”:.设函数,.若函数的图象与轴恰有两个公共点,则实数的取值范围是(
)A.
B.C.
D.参考答案:B略10.如图,在直角梯形中,,∥,,,动点在以点为圆心,且与直线相切的圆上或圆内移动,设(,),则取值范围是(
)
A.
B.
C.
D.参考答案:B略二、填空题:本大题共7小题,每小题4分,共28分11.已知函数f(x)的定义域是(1,2),则函数的定义域是
.参考答案:(0,1)12.若对x>0,y>0有恒成立,m的取值范围是.参考答案:(﹣∞,8]【考点】基本不等式在最值问题中的应用.【分析】恒成立问题转化成最小值,将式子展开凑出积定求和的最小值【解答】解:要使恒成立,只要使的最小值≥m即可,∵=2+2++≥4+2=8∴8≥m故答案为(﹣∞,8]【点评】本题考查不等式恒成立问题,解决这类问题常转化成最值问题,利用基本不等式来解决.13.下列各数
、
、
、中最小的数是___参考答案:14.在△ABC中,ab=2,,则△ABC的面积为______________.参考答案: 15.已知具有线性相关关系的变量x和y,测得一组数据如下表:若已求得它们的回归直线方程的斜率为6.5,则这条回归直线的方程为.x24568y1020403050参考答案:y=6.5x﹣2.5【考点】BK:线性回归方程.【分析】求出横标和纵标的平均数,写出样本中心点,由回归直线的斜率可求回归直线的方程【解答】解:∵,∴这组数据的样本中心点是(5,30)把样本中心点(5,30)代入回归直线方程,可得a=﹣2.5∴回归直线的方程为y=6.5x﹣2.5故答案为:y=6.5x﹣2.516.函数f(x)=x(1-x2)在[0,1]上的最大值为 .
参考答案:
17.给出下列三个命题:①函数与是同一函数.②已知随机变量服从正态分布,若则.③如图,在中,,是上的一点,若,则实数的值为.其中真命题是*
*
.(写出所有真命题的序号)参考答案:②③略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图,在△ABC中,AC=10,,BC=6,D是边BC延长线上的一点,∠ADB=30°,求AD的长.参考答案:【考点】HR:余弦定理.【分析】利用余弦定理,求出∠ACB=60°,∠ACD=120°,在△ACD中,AC=10,∠ADB=30°,∠ACD=120°,利用正弦定理可得结论.【解答】解:在△ABC中,AB=10,AC=14,BC=6,由余弦定理得,所以∠ACB=60°,∠ACD=120°,在△ACD中,AC=10,∠ADB=30°,∠ACD=120°,…8分由正弦定理得,所以…12分.【点评】本题考查正弦、余弦定理的运用,考查学生的计算能力,属于中档题.19.如图所示,直棱柱中,底面是直角梯形,,.(1)求证:平面;(2)在A1B1上是否存一点,使得与平面平行?证明你的结论.参考答案:(1)证明:直棱柱中,平面
,…2分又,∴…5分又BB1∩BC=B平面.………6分(2)存在点,为的中点可满足要求.
…7分证明:由为的中点,有,且………………8分又∵,且,∴为平行四边形,………………10分又面,面,面…12分20.已知圆C:(x﹣3)2+(y﹣4)2=4,(Ⅰ)若直线l1过定点A(1,0),且与圆C相切,求l1的方程;(Ⅱ)若圆D的半径为3,圆心在直线l2:x+y﹣2=0上,且与圆C外切,求圆D的方程.参考答案:【考点】圆的标准方程;圆的切线方程.【专题】计算题.【分析】(I)由直线l1过定点A(1,0),故可以设出直线的点斜式方程,然后根据直线与圆相切,圆心到直线的距离等于半径,求出k值即可,但要注意先讨论斜率不存在的情况,以免漏解.(II)圆D的半径为3,圆心在直线l2:x+y﹣2=0上,且与圆C外切,则设圆心D(a,2﹣a),进而根据两圆外切,则圆心距等于半径和,构造出关于a的方程,解方程即可得到答案.【解答】解:(Ⅰ)①若直线l1的斜率不存在,即直线是x=1,符合题意.(1分)②若直线l1斜率存在,设直线l1为y=k(x﹣1),即kx﹣y﹣k=0.由题意知,圆心(3,4)到已知直线l1的距离等于半径2,即(4分)解之得.所求直线方程是x=1,3x﹣4y﹣3=0.(5分)(Ⅱ)依题意设D(a,2﹣a),又已知圆的圆心C(3,4),r=2,由两圆外切,可知CD=5∴可知=5,(7分)解得a=3,或a=﹣2,∴D(3,﹣1)或D(﹣2,4),∴所求圆的方程为(x﹣3)2+(y+1)2=9或(x+2)2+(y﹣4)2=9.(9分)【点评】本题考查的知识点是圆的方程,直线与圆的位置关系及圆与圆的位置关系,其中(1)的关键是根据直线与圆相切,则圆心到直线的距离等于半径,构造出关于k的方程,(2)的关键是根据两圆外切,则圆心距等于半径和,构造出关于a的方程.21.从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为,,.(1)设X表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X的分布列和均值.(2)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率.参考答案:(1)见解析;(2).试题分析:X表示一辆车从甲地到乙地遇到红灯的个数,X的所有可能取值为0,1,2,3.分别求出相应的概率值,列出随机变量X的分布列并计算数学期望,Y表示第一辆车遇到红灯的个数,Z表示第二辆车遇到红灯的个数,这2辆车共遇到1个红灯就是包括第一辆遇到1次红灯且第2辆没遇上和第一辆没遇上红灯且第2辆遇上1次红灯两个事件的概率的和.试题解析:(1)解:随机变量X的所有可能取值为0,1,2,3.,,,.所以,随机变量X的分布列为X0123P
随机变量X的数学期望.(2)解:设Y表示第一辆车遇到红灯的个数,Z表示第二辆车遇到红灯的个数,则所求事件的概率为.所以,这2辆车共遇到1个红灯的概率为.【考点】离散型随机变量概率分布列及数学期望【名师点睛】求离散型随机变量概率分布列问题首先要清楚离散型随机变量的可取值有那些?当随机变量取这些值时所对应的事件的概率有是多少,计算出概率值后,列出离散型随机变量概率分布列,最后按照数学期望公式计算出数学期望.;列出离散型随机变量概率分布列及计算数学期望是理科高考数学必考问题.22.已知函数f(x)=2sinxcosx﹣cos2x,x∈R.(1)求函数f(x)的单调递增区间;(2)在△ABC中,内角A、B、C所对边的长分别是a、b、c,若f(A)=2,C=,c=2,求△ABC的面积S△ABC的值.参考答案:【考点】三角函数中的恒等变换应用;正弦定理.【分析】(1)由二倍角公式化简可得f(x)=2sin(2x﹣),令2k≤2x﹣≤2k,k∈Z可解得函数f(x)的单调递增区间.(2)由f(A)=2sin(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026湖北省定向浙江大学选调生招录参考题库附答案
- 2026湖南省农林工业勘察设计研究院有限公司招聘考试备考题库附答案
- 2026西藏日喀则市萨嘎县招聘艺术团演职人员5人备考题库附答案
- 2026陕西省面向中国农业大学招录选调生备考题库附答案
- 吉安市公安局2026年公开招聘警务辅助人员【58人】备考题库附答案
- 招6人!湟源县公安局2025年面向社会公开招聘警务辅助人员考试备考题库附答案
- 浙江国企招聘-2026台州椒江城市发展投资集团有限公司、台州市高铁新区开发建设有限公司招聘31人备考题库附答案
- 2026福建省面向郑州大学选调生选拔工作备考题库附答案
- 2026湖南郴州市宜章县金信建设有限公司面向社会招聘3名工作人员备考题库附答案
- 庆阳市市直学校2026年公开引进高层次和急需紧缺人才参考题库附答案
- 湖南省2025-2026学年七年级历史上学期期末复习试卷(含答案)
- 2026年中国热带农业科学院南亚热带作物研究所第一批招聘23人备考题库完美版
- 2026新疆阿合奇县公益性岗位(乡村振兴专干)招聘44人考试参考试题及答案解析
- 纺织仓库消防安全培训
- 器官移植术后排斥反应的风险分层管理
- 虚拟电厂关键技术
- 事业单位清算及财务报告编写范本
- 护坡绿化劳务合同范本
- 临床绩效的DRG与CMI双指标调控
- 护坡施工安全专项方案
- 2026年湛江日报社公开招聘事业编制工作人员备考题库及完整答案详解
评论
0/150
提交评论