版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
八年级数学等腰三角形的性质专项练习题及答案若按边(角)是否相等分类,两边(角)相等的三角形是等腰三角形.等腰三角形是一类特殊三角形,它的两底角相等;等腰三角形是轴对称图形,底边上的高、中线、顶角的平分线互相重合(简称三线合一),特别地,等边三角形的各边相等,各角都为60°.解与等腰三角形相关的问题,全等三角形依然是重要的工具,但更多的是思考运用等腰三角形的特殊性质,这些性质为角度的计算、线段相等的证明、直线位置关系的证明等问题提供了新的理论依据,因此,重视全等三角形的运用,又不囿于全等三角形善于运用等腰三角形的性质探求新的解题途径.例题求解【例1】如图AOB是一钢架,且NAOB=10°,为使钢架更加坚固,需在其内部添加一些钢管EF、FG、GH……添加的钢管长度都与OE相等,则最多能添加这样的钢管—根.(山东省聊城市中考题)思路点拨通过角度的计算,确定添加钢管数的最大值.注角是几何中最活跃的元素,与角相关的知识异常丰富,在三角形中,角又有独特的等量关系,如三角形内角和定理、内外角关系定理.等腰三角形两底角相等,利用这些定理可以找到角与角之间的“和”、“差”、“倍”、“分”关系.随着知识的丰富,我们分析问题、解决问题的方法和工具随之增加,因此,在使用什么方法解决问题时,需要综合与选择.
【例2】如图,若AB=AC,BG=BH,AK=KG,则NBAC的度数为( )A.30°D,32°C36°D.40°(武汉市选拔赛试题)思路点拨图中有很多相关的角,用NBAC的代数式表示这些角,建立关于NBAC的【例3】如图,在4ABC中,已知NA=90°,AB=AC,D为AC上一点,AE±BD于E,延长AE交BC于F,问:当点D满足什么条件时,NADB=NCDF,请说明理由.(安徽省竞赛题改编题)思路点拨本例是探索条件的问题,可先假定结论成立,逐步逆推过去,找到相应的条件,若NADB=NCDF,这一结论如何用?因NADB与NCDF对应的三角形不全等,故需构造全等三角形,而作顶角的平分线或底边上的高中线)是等腰三角形中一条常用辅助线.【例4】如图,在AABC中,AC=BC,NACB=90°,D是AC上一点,AEXBD交BD的延长线于E,且AE=1BD.求证:BD是NABC的角平分线.2(北京市竞赛题)思路点拨AE边上的高与NABC的平分线重合,联想到等腰三角形,通过作辅助线构造全等三角形、等腰三角形.造全等三角形、等腰三角形.注若巳知图形中不存在证题所需的全等三角形,我们需要添加辅助战,构造全等三角形,使欲证的线段或角转移位置,最终使问题得以解决.结论探索型、条件探索型、存在性判断是探索型问题的基本形式,相应的解题策略是:⑴通过对符合条件的特例或简单情形的分析、观察、猜想结果,再给出证明;(2)假设结论成立,逆推追寻相应的条件;⑶假设在题设条件下的某一数学对象存在,进行推理,若由此导出矛盾,则否定假设;否则,给出肯定的结论.【例5】如图,ffiAABC中,已知/C=60°,AC>BC,yAABC‘s△BCA,、4CAB,都是^ABC形外的等边三角形,而点D在AC上,且BC=DC(1)证明:△C'BD04B'DC;(2)证明:△AC'D/^DB'A;(3)对^ABC、△ABC’.△BCA,.△CAB,,从面积大小关系上,你能得出什么结论?(江苏省竞赛题)思路点拨(1)是基础,(2)是(1)的自然推论,(3)由角的不等,导出边的不等关系,这是探索面积不等关系的关键.学力训练.如图,^ABC中,已知AD=AC,要使AD=AE,需要添加的一个条件是 .(济南市中考题).等腰三角形一腰上的中线把这个三角形的周长分成12cm和21cm两部分,则这个等腰三角形底边的长为..AABC中,AB=AC,NA=40°,BP=CE,BD=CP,则NDPF二 度..如图,4ABC中,ADXBC于D,BEXAC于E,AD与BE相交于点F,若BF=AC,则NABC的大小是.(烟台市中考题).AABC的一个内角的大小是40°,且NA=NB,那么NC的外角的大小是()A.140°B.80°或100° C.100°或140°D.80°或140°.已知△ABC中,AB=AC,NBAC=90°,直角NEPF的顶点P是BC中点,两边PE、PF分别交AB、AC于点F、F,给出以下四个结论:①AE=CF;②4EPF是等腰直角三角形,③S =LS;④EF=AP.当NEPF在△ABC内绕顶点P旋转时(点E不与A、B四边形AEPF2ABC重合),上述结论中始终正确的是()
A.1个B.2个C.3个D.4个(苏州市中考题)7.如图,在7.如图,在4ABC中,NACB=90,AC=AE,BC=BF,则NECF=( )D.不确定OA.60°B.45°C.30D.不确定O8.如图,在等边4ABC中,BD=CE,AD与BE相交于点P,则NAPE的度数是()A.45°D.55°C.60°D.75°(菏泽市中考题)9.在4ABC中,已知AB=AC,且过4ABC某一顶点的直线可将4ABC分成两个等腰三角形,试求公ABC各内角的度数.(广州市中考题)10.如图,已知A、D两点分别是正三角形DEF、正三角形ABC的中心,连结GH、AD,延长AD交BC于M,延长DA交EF于N,G是FD与AB的交点,H是ED与AC的交点.⑴请写出三个不同类型的、必须经过至少两步推理才能得到的正确结论(不要求写出证明过程);(2)问FE、GH、BC有何位置关系?试证明你的结论.(江西省中考题).如图,在RtAABC中,已知NACB=90°,AC=BC,D为DC的中点,CE±AD于E,BF〃AC交CE的延长线于点F.求证:AB垂直平分DF.(河南省中考题).如图,O为等边三角形ABC内一点,BD=DA,BE=AB,NDBE=NDBC,则/BED的度数是 ,(河南省竞赛题).如图,AA,、BB分别是/EAO、/DBC的平分线,若AA'=BB=AB,则/BAC的度数为.(全国初中数学联赛题).周长为100,边长为整数的等腰三角形共有 种.(“华杯赛”试题).已知等腰三角形的两边a、b满足|2a-3b+5〔+(2a+3b-13)2=0,则此等腰三角形的周长.如图,在4ABC中,NBAC=120°,AD±BC于D且AB+BD=DC,则NC的大小是( )A.20°B.25°C.30°D.45°.如图,在等腰直面ABC中,AD为斜边上的高,以D为端点任作两条互相垂直的射线与两腰相交于E、F,连结EF与AD相交于G,则NAED与/AGF的关系为()A.NAED>NAGF B.NAED=NAGFC.NAED<NAGF D.不能确定(学习报)公开赛试题).如图,直线小/2、/3表示三条相交的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有()A.一处 B.两处C.三处D.四处(安徽省中考题).AABC的三边为a、b、c,且满足正土b2+3.25=2x但这,则^ABC是()C2 2A.直角三角形 B.等腰三角形C.等边三角形 D.以上答案都不对(河南省竞赛题).如图,在AABC中,AB=AC,P底边BC上一点,PDXAB于D,PEXAC于E,CF±AB于F.(1)求证:PD+PE=CF;(2)若P点在BC的延长线上,那么PD、PE、CF存在什么关系?写出你的猜想并证明.21.如图,在等腰直角4ABC中,ZBAC=90°,AD=AE,AF±BE交BC于点F,过F作FG±于G,(第】目题,rFG±于G,(第】目题,r第21题)CD交BE延长线求证:BG=AF+FG. (重庆市竞赛题)22.如图,在4ABC中,AB=AC,ZBAC=80°,O为^ABC内一点,且NOBC=10°,Z(天津市竞赛题)OCA=20°,求ZBAO(天津市竞赛题)23.如图,等边△ABC中,AB=2,点P是AB边上的任意一点(点P可以与点A重合,但不与点B重合),过点P作PEXBC于E,过点E作EFXAC于F,过点F作FQXAB于Q,⑴用X的代数式表示y;(2)当PB的长等于多少时,点P与点Q重合?(福州市中考题)24.如图,4ABC是边长为l的等边三角形,ABDC是顶角/BDC=120°的等腰三角形,以D为顶点作一个60°角,角的两边分别交AB于M,交AC于N,连结MN,形成一个三角形,求证:4AMN的周长等于2.回等■!三角彩的性质【例题求解】例18例2选CNBGH=/BHK,NABC=2/BGH=NACB,/BAC=/BGH,5NBAC=/ABC+NACB+NBAC=180"例3当AD=CD时,/ADB=/CDF,过A作/A的平分线交B。于G,先证明△ABGgAACF,再证明AAGD姿ACFD.由此可得AD=CD延长BC、AE交于F点,先证明△AF04BOC,得AF=BD=2AE,则AE=FE,再证^ABE组△FBE.(DAC'BD与zSABC中.8D=BC,AB=BC',NUBD=60°+/ABD=/ABC,.,.△C'BDW^ABC^.^D=AC①又在aBCA与△DCB'中,BC=DC,AC=B'C,NACB=/B'CD=60。,.FBCA9△DCB',;.DB'=BA②/.△C,BD^AB/DC(2)由①得CrDMAC=AB'.由②得DE'=EA=UA,又AD=AD,.*.AAC/D^ADB/A.(3)①Saajtc>Saabc”AS^aw:>SaaTk:,②Saarc+54枷==$△*:/+Smhc,【学力训练】3.70°£\BDP^^CPE1.BD=CE,或3.70°£\BDP^^CPE4.45"由Rt/UJDF&RtZ\ADC,得4.45"由Rt/UJDF&RtZ\ADC,得AD=BD.C^ABD^/^BCE..符合题意的图形,有以下4种情形,S,D6.C7.B由此得相应的度数为M45°.45°,90°),(36°,36°.108°),(36‘,72°,72°),(啥,嘤,平)(1)①/CAM=3*②FD/AG③MN_LGH;④4AGH为等边三角形1⑤AAGD是等腰三角形;⑥AABM是直布三角形,⑦△ABSZ\DEF等. (2〉尸£〃仃口〃8(7,证明略.先证△ACDg4CBF,再证△DBF为等腰直角三角形.30°连CD.Z\ACD^Z\BCO£z^BED.12° 14.24设腰长为a,底边长为人则2a+6=100,2a>6,得25VaV5O. 15.7或8A在BC上截取DE=BD,aABD&Z\AED.AB=AE,而AB+8D=DC=CE+DE.则AB=AE=CE,ZB^^AED^2NC.又NB+/C=60'BNAED=NAEG+/FED,/AGF=/AEG+NEAG/!|NFED=/EAG=45°D19.B由条件得4(a-c/+(26—3cV=。.(1)用面积法证明;(2)PD—PE=CF,证法同上..过C作AB的平行线交AF的延长线于P,证明AABE四△ACP,^MCF&ZXPCF,得BE=AP,MF=PF,EG=MG,则BE+EG=AP+MG-=AF+FP+MG=AF+FM+MG,故BG=AF+FG..作NBAC的平分线与CO的延长线交于D,连BD,则AABD9Z\ACD,则NAB。=NAC。=30°,NOBO=/ABC-/OBC—NABD=20°=NABD,NDO8=NOEC+NOCB=40°=/。AB,从而△ABD缨△OBD,AB=OB,即△A6O为等腰三角形,得/BAO=(180°—40°)=70°产+y=2 卜=告TOC\o"1-5"\h\z.(1)»
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 化工厂保卫培训课件内容
- 2025~2026学年济南市天桥区七年级第一学期地理期末考试试题以及答案
- 2025-2026学年河北省五个一名校联盟高三(上)期末数学试卷(含答案)
- 钢结构涂装技术方法详解
- 特异体质学生管理制度
- 2026山东事业单位统考威海市荣成市招聘初级综合类岗位84人备考考试试题及答案解析
- 市场营销管理制度
- 2026浙江杭州海康存储科技有限公司招聘考试参考试题及答案解析
- 2026云南中铝数为(成都)科技有限责任公司社会招聘8人参考考试题库及答案解析
- 小区私人财产管理制度内容(3篇)
- 2025-2026人教版数学七年级上册期末模拟试卷(含答案)
- 2026年九江市八里湖新区国有企业面向社会公开招聘工作人员【48人】笔试参考题库及答案解析
- 广告行业法律法规与行业规范(标准版)
- 2025年CFA二级道德与专业标准题
- 2026年郑州电力高等专科学校单招职业技能测试题库新版
- 2026年八年级物理上册期末考试试卷及答案(共四套)
- 节能与新能源汽车技术路线图2.0
- 保育员配合教学培训工作指南
- 华为公司奖罚管理制度
- 2026年安全员之A证考试题库500道附答案(典型题)
- 2025-2030卫星互联网产业发展趋势与战略布局分析报告
评论
0/150
提交评论