浙江省金华市浦江县实验中学2021-2022学年高二数学文联考试卷含解析_第1页
浙江省金华市浦江县实验中学2021-2022学年高二数学文联考试卷含解析_第2页
浙江省金华市浦江县实验中学2021-2022学年高二数学文联考试卷含解析_第3页
浙江省金华市浦江县实验中学2021-2022学年高二数学文联考试卷含解析_第4页
浙江省金华市浦江县实验中学2021-2022学年高二数学文联考试卷含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省金华市浦江县实验中学2021-2022学年高二数学文联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知是坐标原点,点,若点为平面区域上的一个动点,则的取值范围是().

A.

B.

C.

D.参考答案:C略2.已知命题p:平行四边形的对角线互相平分,命题q:平行四边形的对角线相等,则下列命题中为真命题的是()A.(¬p)∨q B.p∧q C.(¬p)∧(¬q) D.(¬p)∨(¬q)参考答案:D【考点】复合命题的真假.【分析】由题意可知,p为真命题;命题q为假命题,¬p为假命题,¬q为真命题,根据复合命题的真假关系即可判断【解答】解:命题p:平行四边形的对角线互相平分为真命题;命题q:平行四边形的对角线相等为假命题∴¬p为假命题,¬q为真命题根据复合命题的真假关系可得,¬p∨q为假命题,p∧q为假命题,(¬p)∧(¬q)为假命题,(¬p)∨(¬q)为真命题故选D3.已知函数的周期为2,当∈[-1,1]时,那么函数的图象与函数的图象的交点共有A、10个

B、9个

C、8个

D、1个参考答案:A4.极坐标方程ρ=cosθ和参数方程(t为参数)所表示的图形分别是()A.圆、直线 B.直线、圆 C.圆、圆 D.直线、直线参考答案:A【考点】QJ:直线的参数方程;Q4:简单曲线的极坐标方程.【分析】极坐标方程ρ=cosθ化为直角坐标方程为,表示一个圆,参数方程(t为参数),消去参数t可得3x+y+1=0,表示一条直线,由此得出结论.【解答】解:极坐标方程ρ=cosθ即ρ2=ρcosθ,化为直角坐标方程为x2+y2=x,即

,表示一个圆.参数方程(t为参数),消去参数t可得3x+y+1=0,表示一条直线,故选A.5.在上定义运算:,若不等式对任意实数都成立,则的取值范围是____________。参考答案:略6.已知数列满足,则(

)A.120

B.121

C.122

D.123参考答案:C略7.如果执行如图所示的程序框图,输入正整数N(N≥2)和实数a1,a2,…,aN,输出A,B,则()

A.A+B为a1,a2,…,aN的和B.A和B分别是a1,a2,…,aN中最大的数和最小的数C.为a1,a2,…,aN的算术平均数D.A和B分别是a1,a2,…,aN中最小的数和最大的数参考答案:B【考点】程序框图.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序知:该程序的作用是求出a1,a2,…,an中最大的数和最小的数.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是:求出a1,a2,…,an中最大的数和最小的数;其中A为a1,a2,…,an中最大的数,B为a1,a2,…,an中最小的数.故选:B.8.关于的方程有三个不同的实数解,则的取值范围是(

)A.(-4,0)

B.(-∞,0)

C.(1,+∞)

D.(0,1)参考答案:A略9.对任意实数,,,在下列命题中,真命题是(

)A.是的必要条件

B.是的必要条件C.是的充分条件

D.是的充分条件参考答案:B10.若函数的图象总在直线的上方,则实数a的取值范围是(

)A.(-∞,0)

B.(0,+∞)

C.(1,+∞)

D.(-∞,1)参考答案:D由题意得在区间上恒成立,,令函数所以函数在区间(0,1)上单调递减,在区间上单调递增,所以,所以,选D.

二、填空题:本大题共7小题,每小题4分,共28分11.已知m>0,n>0,向量=(m,1,﹣3)与=(1,n,2)垂直,则mn的最大值为

.参考答案:9【考点】空间向量的数量积运算.【分析】由已知得=m+n﹣6=0,从而m+n=6,由此利用均值定理能求出mn的最大值.【解答】解:∵m>0,n>0,向量=(m,1,﹣3)与=(1,n,2)垂直,∴=m+n﹣6=0,即m+n=6,∴mn≤()2=9,当且仅当m=n=3时,取等号,∴mn的最大值为9.故答案为:9.12.函数f(x)=x3+ax﹣2在区间[1,+∞)内是增函数,则实数a的取值范围是.参考答案:[﹣3,+∞)【考点】利用导数研究函数的单调性.【分析】求函数的导数,根据函数的单调性和导数之间的关系即可得到结论.【解答】解:∵函数f(x)=x3+ax﹣2在区间[1,+∞)上单调递增,∴f′(x)=3x2+a≥0,在区间[1,+∞)恒成立,即a≥﹣3x2,∵﹣3x2≤﹣3,∴a≥﹣3,故实数a的取值范围是[﹣3,+∞).故答案为:[﹣3,+∞)13.定义在(0,+∞)上的单调函数f(x),对任意x∈(0,+∞),f[f(x)﹣log2x]=3成立,若方程f(x)﹣f'(x)=2的解在区间(k,k+1)(k∈Z)内,则k=

.参考答案:1【考点】函数零点的判定定理;函数与方程的综合运用.【分析】设t=f(x)﹣log2x,则f(x)=log2x+t,又由f(t)=3,即log2t+t=3,解可得t的值,可得f(x)的解析式,由二分法分析可得h(x)的零点所在的区间为(1,2),结合函数的零点与方程的根的关系,即可得答案.【解答】解:根据题意,对任意的x∈(0,+∞),都有f[f(x)﹣log2x]=3,又由f(x)是定义在(0,+∞)上的单调函数,则f(x)﹣log2x为定值,设t=f(x)﹣log2x,则f(x)=log2x+t,又由f(t)=3,即log2t+t=3,解可得,t=2;则f(x)=log2x+2,f′(x)=,将f(x)=log2x+2,f′(x)=代入f(x)﹣f′(x)=2,可得log2x+2﹣=2,即log2x﹣=0,令h(x)=log2x﹣,分析易得h(1)=<0,h(2)=1﹣>0,则h(x)=log2x﹣的零点在(1,2)之间,则方程log2x﹣=0,即f(x)﹣f′(x)=2的根在(1,2)上,故答案为:1.14.若,则的值是

; 参考答案:215.设分别为椭圆的焦点,点在椭圆上,若;则点的坐标是__________.参考答案:(0.1)或(0.-1)16.若椭圆过抛物线的焦点,且与双曲线有相同的焦点,则该椭圆的方程为

.参考答案:略17.设为随机变量,,若随机变量的数学期望,则

.(结果用分数表示)参考答案:

三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分10分)已知数列是等差数列,且(Ⅰ)求数列的通项公式(Ⅱ)令,求数列前n项和参考答案:19.已知函数f(x)=ln(ax+1)+,x≥0,其中a>0.(Ⅰ)若f(x)在x=1处取得极值,求a的值;(Ⅱ)求f(x)的单调区间;(Ⅲ)若f(x)的最小值为1,求a的取值范围.参考答案:考点:利用导数研究函数的极值;利用导数研究函数的单调性;利用导数求闭区间上函数的最值.专题:常规题型;压轴题;转化思想.分析:(Ⅰ)对函数求导,令f′(1)=0,即可解出a值.(Ⅱ)f′(x)>0,对a的取值范围进行讨论,分类解出单调区间.a≥2时,在区间(0,+∞)上是增函数,(Ⅲ)由(2)的结论根据单调性确定出最小值,当a≥2时,由(II)知,f(x)的最小值为f(0)=1,恒成立;当0<a<2时,判断知最小值小于1,此时a无解.当0<a<2时,(x)的单调减区间为,单调增区间为解答: 解:(Ⅰ),∵f′(x)在x=1处取得极值,f′(1)=0

即a+a﹣2=0,解得

a=1(Ⅱ),∵x≥0,a>0,∴ax+1>0①当a≥2时,在区间(0,+∞)上f′(x)>0.∴f(x)的单调增区间为(0,+∞)②当0<a<2时,由f′(x)>0解得由∴f(x)的单调减区间为,单调增区间为(Ⅲ)当a≥2时,由(II)知,f(x)的最小值为f(0)=1当0<a<2时,由(II)②知,处取得最小值,综上可知,若f(x)的最小值为1,则a的取值范围是【题文】设函数f(x)=|x﹣1|+|x﹣a|.(1)若a=﹣1,解不等式f(x)≥3;(2)如果?x∈R,f(x)≥2,求a的取值范围.【答案】【解析】考点:其他不等式的解法.专题:计算题.分析:(1)由函数f(x)=|x﹣1|+|x﹣a|,知当a=1时,不等式f(x)≥3等价于|x﹣1|+|x+1|≥3,根据绝对值的几何意义能求出不等式f(x)≥3的解集.(2)对?x∈R,f(x)≥2,只需f(x)的最小值大于等于2.当a≥1时,f(x)=|x﹣1|+|x﹣a|=,f(x)min=a﹣1.同理,得当a<1时,f(x)min=1﹣a,由此能求出a的取值范围.解答: 解:(1)∵函数f(x)=|x﹣1|+|x﹣a|,∴当a=﹣1时,不等式f(x)≥3等价于|x﹣1|+|x+1|≥3,根据绝对值的几何意义:|x﹣1|+|x+1|≥3可以看做数轴上的点x到点1和点﹣1的距离之和大于或等于3,则点x到点1和点﹣1的中点O的距离大于或等于即可,∴点x在﹣或其左边及或其右边,即x≤﹣或x≥.∴不等式f(x)≥3的解集为(﹣∞,﹣]∪∪点评:本题考查含绝对值不等式的解法,考查实数的取值范围,综合性强,难度大,是2015届高考的重点.解题时要认真审题,合理运用函数恒成立的性质进行等价转化.20.(本小题12分(1)小问6分,(2)小问7分)所有棱长均为1的四棱柱如下图所示,.(1)证明:平面平面;(2)当为多大时,四棱锥的体积最大,并求出该最大值.参考答案:(1)由题知,棱柱的上下底面为菱形,则①, …………2分由棱柱性质可知,又,故② …………4分由①②得平面, 又平面,故平面平面 ………… 6分(2)设,由(1)可知平面,

…………8分菱形中,因为,,则,且则在中,

…………10分易知四边形为边长为1的菱形,则当时(),最大,且其值为1.

…………12分故所求体积最大值为 …………13分21.在直角坐标系中,曲线的参数方程为:(为参数),以原点为极点,轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.(1)求直角坐标系下曲线与曲线的方程;(2)设为曲线上的动点,求点到上点的距离的最大值,并求此时点的坐标.参考答案:(1)由曲线,可得,两式两边平方相加得:.即曲线在直角坐标系下的方程为.由曲线,即,所以,即曲线在直角坐标系下的方程为.(2)由(1)知椭圆与直线无公共点,椭圆上的点到直线的距离为,∴当即时,的最大值为.此时点的坐标为.22.(本题满分12分)某市为了了解今年高中毕业生的体能状况,从本市某校高中毕业班中抽取一个班进行铅球测试,成绩在8.0米(精确到0.1米)以上的为合格.把所得数据进行整理后,分成6组画出频率分布直方图的一部分(如图),已知从左到右前5个小组的频率分别为0.04,0.10,0.14,0.28,0.30.第6小组的频数是7.(I)求这次铅球测试成绩合格的人数;(II)用此次测试结果估计全市毕业生的情况.若从

今年的高中毕业生中随

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论