版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022学年福建省南平市建瓯东峰中学高二数学文月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知函数的图象关于直线对称,则(
)A.在上单调递减 B.在上单调递增C.在上单调递减 D.在上单调递增参考答案:D【分析】先求出,再利用正弦函数的单调性计算的单调区间即可.【详解】因为的图像关于直线对称,所以,故.因为,所以即.令,则,故函数的单调增区间为,故在上单调递增.故选D.【点睛】对于三角函数的图形,如果直线为其对称轴,则,如果以作为其对称中点,那么.解题中注意利用这个性质求参数的取值.2.已知的值应是
A.
B.
C.
D.参考答案:解析:,故选B.3.设命题:对,则为(
)A.
B.
C.
D.参考答案:C4.已知实数满足,若的最大值为,最小值为,则实数的取值范围为A.
B.
C. D.参考答案:A5.在平面直角坐标系中,若不等式组表示的平面区域的面积为1,则实数t的值为(
) A.0 B.1 C.3 D.﹣1参考答案:B考点:二元一次不等式(组)与平面区域.专题:不等式的解法及应用.分析:利用二元一次不等式组的定义作出对应的图象,找出对应的平面区域,利用面积是9,可以求出a的数值.解答: 解:作出不等式组对应的平面区域,则t<2,由,解得,即B(2﹣t,t),由,解得,即A(t﹣2,t),则|AB|=2﹣t﹣(t﹣2)=2(2﹣t),C到直线AB的距离d=2﹣t,则△的面积S=2(2﹣t)(2﹣t)=1,即(2﹣t)2=1,即2﹣t=1,解得t=1,故选:B点评:本题主要考查三角形面积的计算,根据二元一次不等式组表示平面区域作出对应的图象是解决本题的关键.6.一炮弹在某处爆炸,在A处听到爆炸声的时间比在B处晚2s,则爆炸点所在曲线为(
)A.椭圆的一部分 B.双曲线的一支 C..线段 D.圆参考答案:B【考点】双曲线的定义;双曲线的标准方程.【专题】对应思想;数学模型法;圆锥曲线的定义、性质与方程.【分析】根据题意,结合双曲线的定义,即可得出爆炸点的轨迹为双曲线的一支.【解答】解:∵声速为340m/s,以直线AB为x轴,线段BA的中点为坐标原点,建立直角坐标系;设炮弹爆炸点的轨迹上的点P(x,y),由题意可得|PA|﹣|PB|=680<|AB|,∴点P(x,y)所在的轨迹为双曲线的一支.故选:B.【点评】本题考查了双曲线的定义与应用问题,是基础题目.7.定义在上的函数,如果对于任意给定的等比数列,仍是等比数列,则称为“保等比数列函数”.现有定义在上的如下函数:①;
②;
③;
④.则其中是“保等比数列函数”的的序号为 ()A.①② B.③④
C.①③
D.②④
参考答案:C略8.已知二面角的大小为,若平面内一点到平面的距离为,则在平面内的射影到平面的距离是(
)A、
B、
C、
D、参考答案:D略9.向边长分别为5,6,的三角形区域内随机投一点M,则该点M与三角形三个顶点距离都大于1的概率为
(
)A.
B.
C.
D.参考答案:A10.已知双曲线的右焦点为F,若过点F的直线与双曲线的右支有且只有一个交点,则此直线的斜率的取值范围是 () A.
B.
C. D.参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.已知正方形ABCD的边长为2,E为CD的中点,则=
.参考答案:2考点:平面向量数量积的运算.专题:平面向量及应用.分析:根据两个向量的加减法的法则,以及其几何意义,可得要求的式子为()?(),再根据两个向量垂直的性质,运算求得结果.解答: 解:∵已知正方形ABCD的边长为2,E为CD的中点,则=0,故=()?()=()?()=﹣+﹣=4+0﹣0﹣=2,故答案为2.点评:本题主要考查两个向量的加减法的法则,以及其几何意义,两个向量垂直的性质,属于中档题.12.是过C:焦点的弦,且,则中点的横坐标是
.参考答案:413.阅读下边程序:这个程序的意义是:
。参考答案:y=14.不等式的解集为
。参考答案:15.设为虚数单位,若复数
.参考答案:试题分析:考点:复数运算16.函数的值域是________.参考答案:略17.已知复数z满足z?(i﹣i2)=1+i3,其中i为虚数单位,则z=
.参考答案:﹣i【考点】A5:复数代数形式的乘除运算.【分析】由z?(i﹣i2)=1+i3,得,然后利用复数代数形式的乘除运算化简即可得答案.【解答】解:由z?(i﹣i2)=1+i3,得=,故答案为:﹣i.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分)甲、乙、丙三名高二学生计划利用今年“五一”三天小长假在附近的五个景点(五个景点分别是:荆州古城、三峡大坝、古隆中、明显陵、西游记公园)每人彼此独立地选三个景点游玩。其中甲同学必选明显陵,不选西游记公园,另从其余中随机任选两个;乙、丙两名同学从五个景点中随机任选三个。(1)求甲同学选中三峡大坝景点且乙同学未选中三峡大坝景点的概率(2)用X表示甲、乙、丙选中三峡大坝景点的人数之和,求X的分布列和数学期望.参考答案:(1)设事件A为“甲同学选中三峡大坝景点”、事件B为“乙同学选中三峡大坝景点”,则
…………
3分因为事件A与事件B相互独立,故甲同学选中三峡大坝景点且乙同学未选中三峡大坝景点的概率为
…….……5分(2)设事件C为“丙同学选中三峡大坝景点”则X的所有可能取值为0,1,2,3
………………..……….……….7分………....…………9分X的分布列为:X0123P∴
………………..…………12分19.如图,在直三棱柱ABC﹣A1B1C1中,AC⊥BC,点D是AB的中点.求证:(1)AC⊥BC1;(2)AC1∥平面B1CD.参考答案:【考点】直线与平面平行的判定;空间中直线与直线之间的位置关系.【专题】证明题.【分析】(1)利用线面垂直的判定定理先证明AC⊥平面BCC1B1,BC1?平面BCC1B1,即可证得AC⊥BC1;(2)取BC1与B1C的交点为O,连DO,则OD是三角形ABC1的中位线,OD∥AC1,而AC1?平面B1CD,利用线面平行的判定定理即可得证.【解答】证明:(1)在直三棱柱ABC﹣A1B1C1中,∵CC1⊥平面ABC,∴CC1⊥AC,又AC⊥BC,BC∩CC1=C,∴AC⊥平面BCC1B1∴AC⊥BC1.(2)设BC1与B1C的交点为O,连接OD,BCC1B1为平行四边形,则O为B1C中点,又D是AB的中点,∴OD是三角形ABC1的中位线,OD∥AC1,又∵AC1?平面B1CD,OD?平面B1CD,∴AC1∥平面B1CD.【点评】本题考查直线与平面的平行与垂直,着重考查直线与平面平行的判定定理与直线与平面垂直的判定定理的应用,属于中档题.20.(本小题满分12分)已知首项为的等比数列不是递减数列,其前n项和为,且成等差数列。(1)求数列的通项公式;(2)设,求数列的最大项的值与最小项的值。参考答案:(1)设的公比为q。由成等差数列,得.
2分即,则.又不是递减数列且,所以.
4分故.
6分2)由(1)利用等比数列的前项和公式,可得得
8分当n为奇数时,随n的增大而减小,所以,故.
10分当n为偶数时,随n的增大而增大,所以,故.
11分综上,对于,总有,
所以数列最大项的值为,最小值的值为.
12分21.某研究机构对高三学生的记忆力x和判断力y进行统计分析,得下表数据x681012y2356(1)请画出上表数据的散点图;(2)请根据上表提供的数据,求出y关于x的线性回归方程;(相关公式:,)参考答案:解:(Ⅰ)如图:
┄┄4分
(Ⅱ)=,=,=62+83+105+126=158,故线性回归方程为.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025橡胶制品行业市场供需考察及投资回报规划分析研究报告
- 清宫护理实践案例分析
- 喉癌患者并发症预防与处理
- 医院中医药文化展厅数字化展示方案
- 护理安全控制措施
- 生物标志物在疾病诊断中的研究与应用
- 感染科感染控制措施及效果
- 儿科护理实践与护理理念创新
- 医疗风险管理策略分析
- 医联体内临床技能同质化培训策略
- 安检员X光机培训
- 操作系统-002-国开机考复习资料
- 农业的分布(经济作物、三大林区和四大牧区的分布)(课件)七年级地理下册(沪教版)
- 垃圾压缩站管理制度
- 第12课《诗经二首-蒹葭》课件
- 北京市海淀区2023-2024学年高二下学期期末考试英语试卷(含答案)
- 污泥运输合同协议书
- 和解协议书限高模板
- 冠脉支架介入手术课件
- 《劳动教育》 课件 专题四 掌握劳动知识 第四节 劳动与未来
- 食品加工行业成本控制方案及策略
评论
0/150
提交评论