第二,三讲热工仪表相关规范_第1页
第二,三讲热工仪表相关规范_第2页
第二,三讲热工仪表相关规范_第3页
第二,三讲热工仪表相关规范_第4页
第二,三讲热工仪表相关规范_第5页
已阅读5页,还剩49页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1热工仪表安装规范讲解人:吴昊设备部2.1压力温度流量测量原理2.2压力仪表安装规范2.3温度仪表安装规范2.4流量计安装规范2第二讲热工仪表安装规范

现场仪表测量参数的分类:现场仪表测量参数一般分为温度、压力、流量。下面就着重介绍一下这些参数的测量原理,以及测量这些参数所运用的仪表。32.1压力温度流量测量原理2.1.1温度的测量

温度是电力生产中既普遍而又十分重要的参数之一。任何一个生产过程,都伴随着物质的物理性质的改变,都必然有能量的转化和交换,而热交换则是这些能量转换中最普遍的交换形式。因此,温度的测量和控制,常常是保证这些生产过程正常进行与安全运行的重要环节。4

温度测量仪麦种类繁多,若按测量方式的不同,测温仪表可分为接触式和非接触式两大类。前者感温元件与被测介质直接接触,后者的感温元件却不与被测介质相接触。接触式测温元件简单、可靠、测量精度较高;但是,由于测温元件要与被测介质接触进行充分的热交换才能达到热平衡,因而产生了滞后现象,而且可能与被测介质产生化学反应;另外高温材料的限制,接触式测温仪表不能应用于很高温度的测量。而非接触式测温仪表不与被测介质接触,因而其测温范围很广,其测温上限原则上不受限限制;由于它是通过热辐射来测量温度的,所以不会破坏被测介质的温度场,测温速度也较快,但是这种方法受到被测介质至仪表之间的距离以及幅射通道上的水汽、烟雾、尘埃等其它介质的影响,因此测量量精度较低。52.1.1温度的测量2.1.1温度的测量

下表列出了常用测温仪麦的测温原理、测温范围和主要特点。表中所列的各种温度计,机械式的大多只能就地指示,幅射式的精度较差,只有电的测温仪表精度高,且测温元件很容易与温度变送器配用,转换成统一标准信号进行远传,以实现对温度的自动记录和调节。因此,在生产过程控制中应用最多的是热电偶和热电阻温度计。本节仅介绍这两种温度计。672.1.1温度的测量1.1

热电偶热电偶温度计组成如图所示。由于热电偶的性能稳定、结构简单、使用方便、测量范围广、有较高的准确度,且能方便地将温度信号转换为电势信号,便于信号的远传和多点集中测量,因而在电力生产中应用极为普遍。8231热电偶温度计测量线路1、热电偶2、连接导线3、电测仪表t0t0tAB2.1.1温度的测量9热电偶是由两根不同的导体或半导体材料(如上图中的A和B)焊接或绞接而成。焊接的一端称为热电偶的热端(测量端或工作端),和导线连接的一端称为热电偶的冷端(自由端)。组成热电偶的两根导体或半导体称作热电极。把热电偶的热端插入需要测温的生产设备中,冷端置于生产设备的外面,如果两端所处的温度不同(譬如,热端温度为t,冷瑞温度为to),则在热电偶回路中便会产生热电势E。该热电势E与热电偶两端的温度t和to均E有关。如果保持to不变,则热电势E只是被测温度t的函数。用测得E的数值后,便知道被测温度t的大小。2.1.1温度的测量

国际电工委员会(IEC)对其中已被国际公认,性能优良和产量最大的七种制定了标准,即IEC584-1和IEC584-2中所规定的:S分度(铂铑10-铂);B分度号(铂铑30-铂铑6);K分度号(镍铬-镍硅);E分度号(镍铬-康铜);T分度号(铜-康铜);J分度号(铁-康铜);R分度号(铂铑13-铂)等热电偶。热电偶根据测温条件和安装位置的不同,具有多种结构型式。虽然它们的结构和外形不尽相同,但其基本结构通常均由热电极、绝缘管、保护套管和接线盒等主要部分组成。102.1.1温度的测量112.1.1温度的测量热电阻热电阻温度计广泛用来测量中、低温(一般为300℃以下)。它的特点是准确度高,在测量中、低温时,它的输出信号比热电偶要大得多,灵敏度高,同样可实现远传、自动记录和多点测量。122.1.1温度的测量热电阻的测温原理金属导体的电阻值随温度的变比而变化的。一般说来,他们之间的关系为:Rt=R0[1+α(t-t0)]ΔRt=Rt-R0=αR0Δt

式中Rt温度为t℃时的电阻值;R。温度为t0℃(通常为0℃)时的电阻值;α电阻温度系数即温度变化1℃时电阻值的相对变化量,单位是℃-1,;Δt温度的变化量,即t-t。=ΔtΔRt温度改变Δt时的电阻变化量。

132.1.1温度的测量

由上可知,温度的变化,导致了导体电阻的变化。实验证明,大多数金属导体在温度每升高1℃时,其电阻值要增加0.4一0.6%,热电阻温度计就是把温度变化所引起热电阻的变化值,通过测量电路(电桥)转换成电压(毫伏)信号,然后由显示仪表指示或记录被测温度。热电阻温度计与热电偶温度计的测温原理是不相同的。热电偶温度计把温度的变化通过感温元件——热电偶转换为热电势的变化值来测量温度的;而热电阻温度计则是把温度的变化通过感温元件——热电阻转换为电阻的变化来测量温度的。

142.1.1温度的测量

对于制作热电阻丝的材料是有一定技术要求的,一般应具有下列特性;电阻温度系数要大,则测量灵敏度就高;热容量要小,则对温度变化的响应就快,即动态特性较好;电阻率要大,则相同的电阻值下电阻体体积就小,因而热容量也小;在整个测温范围内,具有稳定的物理和化学性质;要容易加工,有良好的复制性,电阻与温度的关系最好近于线性或为平滑的曲线,以便于分度和读数;价格便宜等。根据具体情况,目前应用最广泛的是铂和铜,分度号Pt50铂电阻、分度号Pt100铂电阻和分度号Cu50铜电阻、分度号Cu100铜电阻。相应的分度表(电阻值与温度对照表)可在相关资料中查到。热电阻是由电阻体、保护套管以及接线盒等主要部件所组成。除电阻体外,其余部分的结构形状一般与热电偶的相应部分相同。152.1.2

压力的测量

在压力测量中,通常有绝对压力,表压力、负压、或真空度等名词。绝对压力是指介质所受的实际压力。表压是指高于大气压的绝对压力与大气压之差,即:

P表=P绝-P大负压与真空度是指大气压力与低于大气压力的绝对压力之差,即:

P真=P大-P绝绝对压力、表压力、大气压力、负压力(真空度)之间的关系如下图所示。因为各种工艺设备和测量仪表都处于大气中,所以工程上都用表压力或真空度来表示压力的大小。我们用压力表来测量压力的数值,实际上也都是表压或真空度(绝对压力表的指示值除外)。因此,在工程上无特别说明时,所提的压力均指表压力或真空度。162.1.2

压力的测量主要压力检测仪表:1.弹簧管压力表弹簧管压力表是压力仪表的主要组成部份之一,它有着极为广泛的应用价值,它具有结构简单,品种规格齐全、测量范围广、便于制造和维修和价格低廉等特点。弹簧管压力表是单圈弹簧压力表的简称。它主要由弹簧管、齿轮传动机构(包括拉杆、扇形齿轮、中心齿轮)、示数装置(指针和分度盘)以及外壳等几部份组成,如下图所示。弹簧管是一端封闭并弯成270度圆孤形的空心管子。17

弹簧管压力表1、弹簧管2拉杆3、扇型齿轮3、中心齿轮5、指针6、面板7、游丝8、调整螺钉9接头ab2.1.2

压力的测量

182.1.2

压力的测量

它的截面呈扁圆形或椭圆形,椭圆的长轴2a与图面垂直的弹簧管的中心轴O相平行。管子封闭的一端B为自由端,即位移输出端;而另一端A则是固定的,作为被测压力的输入端。当由它的固定端A通入被测压力P后,由于呈椭圆形截面的管子在压力P的作用下,将趋于圆形,弯成圆弧形的弹簧管随之产生向外挺直的扩张变形,使自由端B发生位移。此时弹簧管的中心角γ要随即减小Δγ,也就是自由端将由B移到B,处,如图2-3(b)上虚线所示。此位移量就相应于某一压力值。自由端B的弹性变形位移通过拉杆使扇形齿轮作逆时针偏转,使固定在中心齿轮轴上的指针也作顺时针偏转,从而在面板的刻度标尺上显示出被测压力的数值。由于弹簧管自由端位移而引起弹簧管中心角相对变化值Δγ/γ与被测压力P之间具有比例关系,因此弹簧管压力表的刻度标尺是均匀的。192.1.2

压力的测量

由上述可如,弹簧管自由端将随压力的增大而向外伸张。反之若管内压力小于管外压力,则自由端将随负压的增大而向内弯曲。所以,利用弹簧管不仅可以制成压力表,而且还可制成真空表或压力真空表。弹簧管压力表除普通型外,还有一些是具有特殊用途的,例如耐腐蚀的氨用压力表、禁油的氧用压力表等。为了能表明具体适用何种特殊介质的压力测量,常在其表壳、衬圈或表盘上涂以规定的色标,并注有特殊介质的名称,使用时应予以注意。202.1.2

压力的测量2.电容式传感器21ΔSS0S0S2S1图2-19膜片位移原理图4~20MA放大电路原理:△P变化△C电流的变化2.1.2

压力的测量

压力表的选用应根据工艺生产过程对压力测量的要求,被测介质的性质,现场环境条件等来考虑仪表的类型、量程和精度等级。并确定是否需要带有远传、报警等附加装置。这样才能达到经济、合理和有效的目的。

1.类型的选用仪表类型的选用必须满足工兰生产的要求。例如是否需要远传;被测介质的物理化学性质(如腐蚀性、温度高低、粘度大小、脏污程度、易燃易爆等)是否对仪表提出特殊要求;现场环境条件(如高温、电磁场、振动等)对仪表有否特殊要求等。普通压力表的弹簧管材料多采用铜合金,高压的也有采用碳钢,而氨用压力表的弹簧管材料都采用碳钢,不允许采用铜合金。因为氨气对铜的腐蚀极强,所以普通压力表用于氨气压力测量很快就要损坏。氧气压力表与普通压力表在结构和材质上完全相同,只是氧用压力表禁油。因为油进入氧气系统会引起爆炸。如果必须采用现有的带油污的压力表测量氧气压力时,使用前必须用四氯化碳反复清洗,认真检查直到无油污为止。222.1.2

压力的测量2.测量范围的确定仪表的测量范围是根据被测压力的大小来确定的。对于弹性式压力表,为保证弹性元件能在弹性变形的完全范围内可靠地工作,量程的上限值应高于工艺生产中可能的最大压力值。根据"热控检修技术规程",在测量稳定压力时,最大工作压力不应超过量程的2/3;测量脉动压力时,最大工作压力不超过量程的1/2;测量高压压力时,最大工作压力不应超过量程的3/5。为了保证测量的准确度,所测的压力值不能太接近于仪表的下限值,亦即仪表的量程不能选得太大,一般被测压力的最小值应不低于量程的1/3。按上述要求算出后,实取稍大的相邻系列值,一般可在相应的产品目录申查到。

3.精度级的选取仪表的精度主妥是根据生产上允许的最大测量误差来确定的。此外,在满足工艺要求的前提下,还要考虑经济性,即尽可能选用精度较低、价廉耐用的仪表。232.1.3

流量的测量

在工程上,流量是指单位时间内流过管道某一截面的流体的体积或质量,即瞬时流量。流量的计量单位如下:

表示体积流量的单位常用立方米每小时(m3/h)、升每分(I/min)、升每秒(l/s)等;表示质量流量的单位常用吨每小时(t/h)、千克每小时(kg/h)、千克每秒(kg/s)等。

若流体的密度是ρ,则体积流量Q与质量流量M的关系是:M=Qρ或Q=M/ρ242.1.3

流量的测量差压式流量计差压式(也称节流式)流量计是使用历史最久,应用也最广泛的一种流量测量仪表,同时也是目前生产中最成熟的流量测量仪表之一。它是基于流体流动的节流原理,利用流体流经节流装置时产生的压力差与其流量有关而实现流量测量的。差压式流量计通常是由能将被测流量转换成差压信号的节流装置(包括节流元件和取压装置)、导压管和差压计或差压变送器及其显示仪表三部分所组成。在单元组合仪表中,由节流装置所产生的差压信号,常通过差压变送器转换成相应的电信号或气信号,以供显示、调节用。252.1.3

流量的测量节流现象及其原理流体在有节流元件的管道中流动时,在节流元件前后的管璧处,流体的静压力产生差异的现象称为节流现象,如图3-1所示。所谓节流装置就是设置在管道中能使流体产生局部收缩的节流元件和取压装置的总称。应用最广泛的节流元件是孔板,其次是喷嘴、文丘里管。

262.1.3

流量的测量272.1.3

流量的测量下图表示在孔板前后流体的流速与压力的分布情况:

282.1.3

流量的测量

沿管道轴向连续地向前流动的流体,由于遇到节流元件的阻挡,使靠近管壁处的流体受到的阻挡作用最强,因而使其一部分动压能转化成静压能,于是就出现了节流元件入口端面靠近管壁处的流体静压力P1,的升高(即图中P1>P2)。此压力比管道中心处压力要大,即在节流元件入口端面处产生一径向压差。这一径向压差使流体产生径向附加速度,从而使靠近管壁处的流体质点的流向就与管道中心轴线相倾斜,形成了流束的收缩运动。同时,由于流体运动的惯性,使得流束收束最厉害(即流束最小截面)的位置不在节流孔处,而是位于节流孔之后(即图中截面Ⅱ处),并随流量大小而变化。以上就是流体流经节元件时,流束为什么产生收缩的原因。292.1.3

流量的测量

由于节流元件的阻挡造成了流束的局部收缩,同时,又因流体始终处于连续稳定的流动状态,因此在流束截面最小处的流速达到最大。根据伯努利方程式和位能、动能的相互转化原理,在流束截面最小处的流体静压力最低,同理,在孔板出口端面处,由于流速已比原来增大,因此静压力也就较原来为低(即图中P2<P1)。故节流元件入口侧的静压P1比其出口侧的静压P2大,即在节流元件前后产生压差ΔP。节流元件前流体压力较高,常称为正压,并用“+”标记;节流元件后流体静压力较低,常称为负压,并用“—”标记。并且流量愈大,流束局部收缩和位能、动能的转化也愈显著,即ΔP也愈大。所以只要测出元件前后的压力差ΔP就可求得流经节流元件的流体流量。这就是节流装置测量流量基本原理。302.1.3

流量的测量

流量基本方程式是用来阐明流量与压差之间的定量关系。它是根据流体力学中的伯努利方程式利连续性方程式推导而得的,即式

式中α一流量系数。它与节流元件的结构形式、取压方式、孔口截面积之比m;雷诺数Re、孔口边缘尖锐度、管壁粗糙度等因素有关。可从有关手册查得

ε——膨胀校正系数。它与孔板前后压力的相对变化量、介质的等熵指数m等有关。也可从有关手册查得。但对不可压缩的液体来说,常取ε=1;A。——节流元件的开孔截面积;ΔP——节流元件前后实际测得的静压差;ρ1————节流元件前流体密度31Q=αεA02ΔPρ1

M=αεA0√2ρ1ΔP2.1.3

流量的测量

在计算时,如果把Ao用π/4d2表示,d为工作温度下孔板孔口直径,单位为mm,而ΔP以Mpa为单位,则上述基本流量方程式可换算为实用流量计算公式,即:式中0.3998=3600×10-6×π/4×√2。以上流量公式表明,当αερd等均为常数时,流量与压差的平方根成正比。因此,由理论推导得来的流量基本方程式,应用到测量实际生产中的流体流量时,公式中各系数应能满足在测量条件下的相对稳定,这是采用这种流量计能否达到准确测量的前提。32Q=0.003998αεd2ΔP

ρ1

M=0.003998αεd2

√ρ1ΔP2.1.3

流量的测量

因为流量与压差的平方根成正比,因此在用差压法测量流量时,被测流量值不应接近于仪表刻度的下限值,否则误差将会很大。一般不要让流量计运行在量程的30%以下。

332.2压力仪表安装规范取源部件安装的通用规定1、取源部件的安装,应在工艺设备制造或工艺管道预制、安装的同时进行。2、安装取源部件的开孔与焊接工作,必须在工艺管道或设备的防腐、衬里、吹扫和压力实验前进行。3、在高压、合金钢、有色金属的工艺管道和设备上开孔时,采用机械加工的方法。342.2压力仪表安装规范4、在砌体和混凝土浇注体上安装的取源部件应在砌筑或浇注的同时埋入,当无法做到时,应予留安装孔。5、安装取源部件不宜在焊缝及其边缘上开孔及焊接。6、取源阀门应按现行的国家标准《工业管道工程施工及验收规范》的规定检验合格后,才能安装。7、取源阀门与工艺设备或管道的连接不宜采用卡套式接头。2.2压力仪表安装规范8、相邻两个取源部件的距离应大于管道外径,但不得小于200mm。9、安装取源部件应在便于检修和维护的位置。10、取源阀门及以前的管路应参与主设备严密性试验。11、取源部件安装后应标明标号和用途。2.2压力仪表安装规范取源部件位置选择1、压力取源部件与温度取源部件在同一管段上时,应安装在温度取源部件的上游。2.2压力仪表安装规范2、测量带有灰尘、固体颗粒或沉淀物等混浊介质的压力时,取源部件应倾斜向上安装。在水平的工艺管道上宜顺流束成锐角安装。2.2压力仪表安装规范3、压力取源部件的安装位置应选在直管段上。4、压力取源部件的端部不应超出工艺设备或管道的内壁。5、当测量温度高于60℃的液体、蒸汽和可凝性气体的压力时,就地安装的压力表的取源部件应带有环形或U型冷凝弯。6.自动,保护,测量仪表一般不合用一个测孔,应分开选择2.2压力仪表安装规范7、压力取源部件在水平和倾斜的工艺管道上安装时,取压口的方位应符合下列规定:测量气体压力时,取源部件应在工艺管道的上半部2.2压力仪表安装规范测量液体压力时,取源部件应在工艺管道的下半部与工艺管道的水平中心线成0~45度夹角的范围内。2.2压力仪表安装规范测量蒸汽压力时,取源部件应在工艺管道的上半部及下半部与工艺管道水平中心线成0~45度夹角的范围内。2.2压力仪表安装规范变送器安装的一般要求1.变送器安装原则是"大分散,小集中"。尽量靠近取源部件和便于维护。2.变送器安装地点应避开剧烈震动和和强磁场并且周围无腐蚀性气体。3.被测介质为气体时变送器高于取源部件。对于炉膛负压和凝汽器真空,变送器高于取源部件。2.2压力仪表安装规范4.被测介质为液体和蒸汽时变送器低于取源部件。5.对于在保护箱中的变送器仪表管路进入保护箱的部分应用防火泥密封。2.3温度仪表安装规范基本要求1.按设计要求核对元件的型号和长度。2.测温元件应安装在能代表被测温度,便于维护,不受到剧烈震动和热冲击的地方。3.安装前元件必须检验合格。4.两侧孔间距大于外径D,并且要大于200mm。2.3温度仪表安装规范汽水油管道测温元件安装1.插入深度热电偶和热电阻插入深度,对于高温,高压蒸汽管道外径DD>250mm插入深度为100mmD<=250mm插入深度为70mm

D>500mm插入深度为300mm

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论