广西壮族自治区百色市民族中学2023年高二数学理测试题含解析_第1页
广西壮族自治区百色市民族中学2023年高二数学理测试题含解析_第2页
广西壮族自治区百色市民族中学2023年高二数学理测试题含解析_第3页
广西壮族自治区百色市民族中学2023年高二数学理测试题含解析_第4页
广西壮族自治区百色市民族中学2023年高二数学理测试题含解析_第5页
免费预览已结束,剩余2页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广西壮族自治区百色市民族中学2023年高二数学理测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.设函数f(x)=g(x)+x2,曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,则曲线y=f(x)在点(1,f(1))处切线的斜率为()A.4

B.-

C.2 D.-参考答案:A略2.已知事件“在矩形ABCD的边CD上随机取一点P,使△APB的最大边是AB”发生的概率为,则=()A. B. C. D.参考答案:D【考点】简单线性规划.【分析】先明确是一个几何概型中的长度类型,然后求得事件“在矩形ABCD的边CD上随机取一点P,使△APB的最大边是AB”发生的线段长度,再利用两者的比值即为发生的概率,从而求出.【解答】解:记“在矩形ABCD的边CD上随机取一点P,使△APB的最大边是AB”为事件M,试验的全部结果构成的长度即为线段CD,构成事件M的长度为线段CD其一半,根据对称性,当PD=CD时,AB=PB,如图.设CD=4x,则AF=DP=x,BF=3x,再设AD=y,则PB==,于是=4x,解得,从而.故选D.3.某市有高中生30000人,其中女生4000人,为调查学生的学习情况,采用分层抽样的方法抽取一个容量为150的样本,则样本中女生的数量为(

)A.30

B.25

C.20

D.15参考答案:C略4.已知集合A={x|x2﹣x﹣2<0},B={x|log4x<0.5},则()A.A∩B=? B.A∩B=B C.?UA∪B=R D.A∪B=B参考答案:B【考点】1E:交集及其运算.【分析】利用不等式的性质分别求出集合A与B,由此利用交集和并集的定义能求出结果.【解答】解:∵集合A={x|x2﹣x﹣2<0}={x|﹣1<x<2},B={x|log4x<0.5}={x|0<x<2},∴A∩B=B,?UA∪B={x|x≤﹣1或x>0},A∪B=A.故选:B.5.已知函数,则是(

)A.奇函数,且在R上是增函数 B.偶函数,且在(0,+∞)上是增函数C.奇函数,且在R上是减函数 D.偶函数,且在(0,+∞)上是减函数参考答案:C【分析】先判断定义域是否关于原点对称,进而利用可得函数为奇函数,再由指数函数的单调性可判断函数的单调性.【详解】定义域为R,关于原点对称,,有,所以是奇函数,函数,显然是减函数.故选C.【点睛】本题主要考查了函数的奇偶性和单调性的判断,属于基础题.6.图是根据某赛季甲、乙两名篮球运动员每场比赛得分情况画出的茎叶图.从这个茎叶图可以看出甲、乙两名运动员得分的中位数分别是()A.31,26 B.36,23 C.36,26 D.31,23参考答案:C【考点】茎叶图;众数、中位数、平均数.【分析】由茎叶图可知甲篮球运动员比赛数据有13个,出现在中间第7位的数据是36,乙篮球运动员比赛数据有11个,出现在中间第6位的数据是26.【解答】解:由茎叶图可知甲篮球运动员比赛数据有13个,出现在中间第7位的数据是36,所以甲得分的中位数是36由茎叶图可知乙篮球运动员比赛数据有11个,出现在中间第6位的数据是26.所以乙得分的中位数是26.故选C7.“"的否定是

(

)(A)

(B)(C)

(D)参考答案:B8.阅读如图所示的程序框图,运行相应的程序,输出的结果是()

A.3

B.11C.38

D.123参考答案:B9.等差数列,的前项和分别为,,若,则=A.

B.

C.

D.参考答案:B10.已知,则的最小值为

)A

0

B

C

D

参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.点P在椭圆+=1上,点P到直线3x﹣4y=24的最大距离和最小距离为

.参考答案:;【考点】圆锥曲线的最值问题;直线与圆锥曲线的关系.【分析】设点P的坐标为(4cosθ,3sinθ),可得点P到直线3x﹣4y=24的d的表达式,再根据余弦函数的值域求得它的最值.【解答】解:设点P的坐标为(4cosθ,3sinθ),可得点P到直线3x﹣4y=24的d==,当时,d取得最大值为,当时,最小值为.故答案为:;.12.设,是实数,其中是虚数单位,则

.参考答案:13.若随机变量X服从两点分布,且成功概率为0.7;随机变量Y服从二项分布,且Y~B(10,0.8),则E(X),D(X),E(Y),D(Y)分别是

.参考答案:14.在平面几何中有如下结论:正三角形ABC的内切圆面积为S1,外接圆面积为S2,则,推广到空间可以得到类似结论:已知正四面体P-ABC的内切球体积为,外接球体积为,则____.参考答案:设正四面体的棱长为,高为,四个面的面积为,内切球半径为,外接球半径为,则由,得;由相似三角形的性质,可求得,所以考点:类比推理,几何体的体积.15.函数y=的定义域是

.参考答案:(0,]考点:函数的定义域及其求法.专题:函数的性质及应用.分析:欲求函数的定义域,只需找到使函数解析式有意义的x的取值范围,因为函数中有对数,所以真数大于0,因为函数中有二次根式,所以被开方数大于等于0,解不等式组即可.解答: 解:要使函数有意义,需满足,解得0<x≤,∴函数的定义域为(0,].故答案为(0,].点评:本题主要考察了函数定义域的求法,主要是求使函数成立的x的取值范围.16.若,则的值是

参考答案:117.设在4次独立重复试验中,事件A至少发生一次的概率等于,则在一次试验中事件A发生的概率是

.参考答案:1/3略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分)设函数曲线y=f(x)通过点(0,2a+3),且在点(-1,f(-1))处的切线垂直于y轴.(Ⅰ)用a分别表示b和c;(Ⅱ)当bc取得最小值时,求函数g(x)=-f(x)e-x的单调区间.参考答案:解:(Ⅰ)因为

又因为曲线通过点(0,2a+3),

故………2分

又曲线在(-1,f(-1))处的切线垂直于y轴,故

即-2a+b=0,因此b=2a.

………5分

(Ⅱ)由(Ⅰ)得

故当时,取得最小值-.

此时有

………7分

从而

所以………9分

令,解得

由此可见,函数的单调递减区间为(-∞,-2)和(2,+∞);单调递增区间为(-2,2).………12分略19.(16分)已知椭圆+=1(a>b>0)的左焦点为F(﹣c,0),离心率为,点M在椭圆上且位于第一象限,直线FM被圆x2+y2=截得的线段的长为c,|FM|=.(Ⅰ)求直线FM的斜率;(Ⅱ)求椭圆的方程;(Ⅲ)设动点P在椭圆上,若直线FP的斜率大于,求直线OP(O为原点)的斜率的取值范围.参考答案:【考点】直线与圆锥曲线的综合问题;椭圆的标准方程.【专题】创新题型;直线与圆;圆锥曲线的定义、性质与方程.【分析】(Ⅰ)通过离心率为,计算可得a2=3c2、b2=2c2,设直线FM的方程为y=k(x+c),利用勾股定理及弦心距公式,计算可得结论;(Ⅱ)通过联立椭圆与直线FM的方程,可得M(c,c),利用|FM|=计算即可;(Ⅲ)设动点P的坐标为(x,y),分别联立直线FP、直线OP与椭圆方程,分x∈(﹣,﹣1)与x∈(﹣1,0)两种情况讨论即可结论.【解答】解:(Ⅰ)∵离心率为,∴==,∴2a2=3b2,∴a2=3c2,b2=2c2,设直线FM的斜率为k(k>0),则直线FM的方程为y=k(x+c),∵直线FM被圆x2+y2=截得的线段的长为c,∴圆心(0,0)到直线FM的距离d=,∴d2+=,即()2+=,解得k=,即直线FM的斜率为;(Ⅱ)由(I)得椭圆方程为:+=1,直线FM的方程为y=(x+c),联立两个方程,消去y,整理得3x2+2cx﹣5c2=0,解得x=﹣c,或x=c,∵点M在第一象限,∴M(c,c),∵|FM|=,∴=,解得c=1,∴a2=3c2=3,b2=2c2=2,即椭圆的方程为+=1;(Ⅲ)设动点P的坐标为(x,y),直线FP的斜率为t,∵F(﹣1,0),∴t=,即y=t(x+1)(x≠﹣1),联立方程组,消去y并整理,得2x2+3t2(x+1)2=6,又∵直线FP的斜率大于,∴>,解得﹣<x<﹣1,或﹣1<x<0,设直线OP的斜率为m,得m=,即y=mx(x≠0),联立方程组,消去y并整理,得m2=﹣.①当x∈(﹣,﹣1)时,有y=t(x+1)<0,因此m>0,∴m=,∴m∈(,);②当x∈(﹣1,0)时,有y=t(x+1)>0,因此m<0,∴m=﹣,∴m∈(﹣∞,﹣);综上所述,直线OP的斜率的取值范围是:(﹣∞,﹣)∪(,).【点评】本题考查椭圆的标准方程和几何性质、直线方程和圆的方程、直线与圆的位置关系、一元二次不等式等基础知识,考查用代数方法研究圆锥曲线的性质,考查运算求解能力、以及用函数与方程思想解决问题的能力,属于中档题.20.已知圆.(1)直线:与圆相交于、两点,求;(2)如图,设、是圆上的两个动点,点关于原点的对称点为,点关于轴的对称点为,如果直线、与轴分别交于和,问是否为定值?若是求出该定值;若不是,请说明理由。参考答案:解:(1)圆心到直线的距离.圆的半径,.………………6分(2),,则,,,.………………10分:,得.:,得.…………14分………………16分21.(本小题满分10分)已知空间四边形ABCD,BC=BD,AC=AD,E是CD边的中点.在AE上的一个动点P,讨论BP与CD是否存在垂直关系,并证明你的结论.参考答案:连接BE,BP与CD满足垂直关系.

……………2分因为BC=BD,E是CD中点,所以CD⊥BE

……………4分又因为AC=AD,E是CD中点,所以CD⊥AE

……………6分

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论