版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年高考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.为双曲线的左焦点,过点的直线与圆交于、两点,(在、之间)与双曲线在第一象限的交点为,为坐标原点,若,且,则双曲线的离心率为()A. B. C. D.2.函数(,,)的部分图象如图所示,则的值分别为()A.2,0 B.2, C.2, D.2,3.要得到函数的图象,只需将函数的图象上所有点的()A.横坐标缩短到原来的(纵坐标不变),再向左平移个单位长度B.横坐标缩短到原来的(纵坐标不变),再向右平移个单位长度C.横坐标伸长到原来的2倍(纵坐标不变),再向左平移个单位长度D.横坐标伸长到原来的2倍(纵坐标不变),再向右平移个单位长度4.五名志愿者到三个不同的单位去进行帮扶,每个单位至少一人,则甲、乙两人不在同一个单位的概率为()A. B. C. D.5.已知复数,则的虚部为()A. B. C. D.16.已知等差数列满足,公差,且成等比数列,则A.1 B.2 C.3 D.47.设分别是双曲线的左右焦点若双曲线上存在点,使,且,则双曲线的离心率为()A. B.2 C. D.8.如图所示,为了测量、两座岛屿间的距离,小船从初始位置出发,已知在的北偏西的方向上,在的北偏东的方向上,现在船往东开2百海里到达处,此时测得在的北偏西的方向上,再开回处,由向西开百海里到达处,测得在的北偏东的方向上,则、两座岛屿间的距离为()A.3 B. C.4 D.9.执行如图所示的程序框图,若输入的,则输出的()A.9 B.31 C.15 D.6310.如图是2017年第一季度五省GDP情况图,则下列陈述中不正确的是()A.2017年第一季度GDP增速由高到低排位第5的是浙江省.B.与去年同期相比,2017年第一季度的GDP总量实现了增长.C.2017年第一季度GDP总量和增速由高到低排位均居同一位的省只有1个D.去年同期河南省的GDP总量不超过4000亿元.11.设函数是奇函数的导函数,当时,,则使得成立的的取值范围是()A. B.C. D.12.过抛物线()的焦点且倾斜角为的直线交抛物线于两点.,且在第一象限,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若双曲线C:(,)的顶点到渐近线的距离为,则的最小值________.14.如图,是一个四棱锥的平面展开图,其中间是边长为的正方形,上面三角形是等边三角形,左、右三角形是等腰直角三角形,则此四棱锥的体积为_____.15.已知向量,,若,则________.16.如图,直线是曲线在处的切线,则________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在四棱锥中,底面是平行四边形,底面.(1)证明:;(2)求二面角的正弦值.18.(12分)如图,在四棱锥中,底面,,,,,点为棱的中点.(1)证明::(2)求直线与平面所成角的正弦值;(3)若为棱上一点,满足,求二面角的余弦值.19.(12分)已知函数u(x)=xlnx,v(x)x﹣1,m∈R.(1)令m=2,求函数h(x)的单调区间;(2)令f(x)=u(x)﹣v(x),若函数f(x)恰有两个极值点x1,x2,且满足1e(e为自然对数的底数)求x1•x2的最大值.20.(12分)设复数满足(为虚数单位),则的模为______.21.(12分)已知抛物线,焦点为,直线交抛物线于两点,交抛物线的准线于点,如图所示,当直线经过焦点时,点恰好是的中点,且.(1)求抛物线的方程;(2)点是原点,设直线的斜率分别是,当直线的纵截距为1时,有数列满足,设数列的前n项和为,已知存在正整数使得,求m的值.22.(10分)如图,在直角中,,通过以直线为轴顺时针旋转得到().点为斜边上一点.点为线段上一点,且.(1)证明:平面;(2)当直线与平面所成的角取最大值时,求二面角的正弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
过点作,可得出点为的中点,由可求得的值,可计算出的值,进而可得出,结合可知点为的中点,可得出,利用勾股定理求得(为双曲线的右焦点),再利用双曲线的定义可求得该双曲线的离心率的值.【详解】如下图所示,过点作,设该双曲线的右焦点为,连接.,.,,,为的中点,,,,,由双曲线的定义得,即,因此,该双曲线的离心率为.故选:D.【点睛】本题考查双曲线离心率的求解,解题时要充分分析图形的形状,考查推理能力与计算能力,属于中等题.2、D【解析】
由题意结合函数的图象,求出周期,根据周期公式求出,求出,根据函数的图象过点,求出,即可求得答案【详解】由函数图象可知:,函数的图象过点,,则故选【点睛】本题主要考查的是的图像的运用,在解答此类题目时一定要挖掘图像中的条件,计算三角函数的周期、最值,代入已知点坐标求出结果3、C【解析】
根据三角函数图像的变换与参数之间的关系,即可容易求得.【详解】为得到,将横坐标伸长到原来的2倍(纵坐标不变),故可得;再将向左平移个单位长度,故可得.故选:C.【点睛】本题考查三角函数图像的平移,涉及诱导公式的使用,属基础题.4、D【解析】
三个单位的人数可能为2,2,1或3,1,1,求出甲、乙两人在同一个单位的概率,利用互为对立事件的概率和为1即可解决.【详解】由题意,三个单位的人数可能为2,2,1或3,1,1;基本事件总数有种,若为第一种情况,且甲、乙两人在同一个单位,共有种情况;若为第二种情况,且甲、乙两人在同一个单位,共有种,故甲、乙两人在同一个单位的概率为,故甲、乙两人不在同一个单位的概率为.故选:D.【点睛】本题考查古典概型的概率公式的计算,涉及到排列与组合的应用,在正面情况较多时,可以先求其对立事件,即甲、乙两人在同一个单位的概率,本题有一定难度.5、C【解析】
先将,化简转化为,再得到下结论.【详解】已知复数,所以,所以的虚部为-1.故选:C【点睛】本题主要考查复数的概念及运算,还考查了运算求解的能力,属于基础题.6、D【解析】
先用公差表示出,结合等比数列求出.【详解】,因为成等比数列,所以,解得.【点睛】本题主要考查等差数列的通项公式.属于简单题,化归基本量,寻求等量关系是求解的关键.7、A【解析】
由及双曲线定义得和(用表示),然后由余弦定理得出的齐次等式后可得离心率.【详解】由题意∵,∴由双曲线定义得,从而得,,在中,由余弦定理得,化简得.故选:A.【点睛】本题考查求双曲线的离心率,解题关键是应用双曲线定义用表示出到两焦点的距离,再由余弦定理得出的齐次式.8、B【解析】
先根据角度分析出的大小,然后根据角度关系得到的长度,再根据正弦定理计算出的长度,最后利用余弦定理求解出的长度即可.【详解】由题意可知:,所以,,所以,所以,又因为,所以,所以.故选:B.【点睛】本题考查解三角形中的角度问题,难度一般.理解方向角的概念以及活用正、余弦定理是解答问题的关键.9、B【解析】
根据程序框图中的循环结构的运算,直至满足条件退出循环体,即可得出结果.【详解】执行程序框;;;;;,满足,退出循环,因此输出,故选:B.【点睛】本题考查循环结构输出结果,模拟程序运行是解题的关键,属于基础题.10、C【解析】
利用图表中的数据进行分析即可求解.【详解】对于A选项:2017年第一季度5省的GDP增速由高到低排位分别是:江苏、辽宁、山东、河南、浙江,故A正确;对于B选项:与去年同期相比,2017年第一季度5省的GDP均有不同的增长,所以其总量也实现了增长,故B正确;对于C选项:2017年第一季度GDP总量由高到低排位分别是:江苏、山东、浙江、河南、辽宁,2017年第一季度5省的GDP增速由高到低排位分别是:江苏、辽宁、山东、河南、浙江,均居同一位的省有2个,故C错误;对于D选项:去年同期河南省的GDP总量,故D正确.故选:C.【点睛】本题考查了图表分析,学生的分析能力,推理能力,属于基础题.11、D【解析】构造函数,令,则,由可得,则是区间上的单调递减函数,且,当x∈(0,1)时,g(x)>0,∵lnx<0,f(x)<0,(x2-1)f(x)>0;当x∈(1,+∞)时,g(x)<0,∵lnx>0,∴f(x)<0,(x2-1)f(x)<0∵f(x)是奇函数,当x∈(-1,0)时,f(x)>0,(x2-1)f(x)<0∴当x∈(-∞,-1)时,f(x)>0,(x2-1)f(x)>0.综上所述,使得(x2-1)f(x)>0成立的x的取值范围是.本题选择D选项.点睛:函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中.某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用.因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的.根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效.12、C【解析】
作,;,由题意,由二倍角公式即得解.【详解】由题意,,准线:,作,;,设,故,,.故选:C【点睛】本题考查了抛物线的性质综合,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
根据双曲线的方程求出其中一条渐近线,顶点,再利用点到直线的距离公式可得,由,利用基本不等式即可求解.【详解】由双曲线C:(,,可得一条渐近线,一个顶点,所以,解得,则,当且仅当时,取等号,所以的最小值为.故答案为:【点睛】本题考查了双曲线的几何性质、点到直线的距离公式、基本不等式求最值,注意验证等号成立的条件,属于基础题.14、【解析】
画图直观图可得该几何体为棱锥,再计算高求解体积即可.【详解】解:如图,是一个四棱锥的平面展开图,其中间是边长为的正方形,上面三角形是等边三角形,左、右三角形是等腰直角三角形,此四棱锥中,是边长为的正方形,是边长为的等边三角形,故,又,故平面平面,的高是四棱锥的高,此四棱锥的体积为:.故答案为:.【点睛】本题主要考查了四棱锥中的长度计算以及垂直的判定和体积计算等,需要根据题意15、10【解析】
根据垂直得到,代入计算得到答案.【详解】,则,解得,故,故.故答案为:.【点睛】本题考查了根据向量垂直求参数,向量模,意在考查学生的计算能力.16、.【解析】
求出切线的斜率,即可求出结论.【详解】由图可知直线过点,可求出直线的斜率,由导数的几何意义可知,.故答案为:.【点睛】本题考查导数与曲线的切线的几何意义,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)【解析】
(1)利用正弦定理求得,由此得到,结合证得平面,由此证得.(2)建立空间直角坐标系,利用平面和平面的法向量,计算出二面角的余弦值,再转化为正弦值.【详解】(1)在中,由正弦定理可得:,,底面,平面,;(2)以为坐标原点建立如图所示的空间直角坐标系,,设平面的法向量为,由可得:,令,则,设平面的法向量为,由可得:,令,则,设二面角的平面角为,由图可知为钝角,则,,故二面角的正弦值为.【点睛】本小题主要考查线线垂直的证明,考查空间向量法求二面角,考查空间想象能力和逻辑推理能力,属于中档题.18、(1)证明见解析(2)(3)【解析】
(1)根据题意以为坐标原点,建立空间直角坐标系,写出各个点的坐标,并表示出,由空间向量数量积运算即可证明.(2)先求得平面的法向量,即可求得直线与平面法向量夹角的余弦值,即为直线与平面所成角的正弦值;(3)由点在棱上,设,再由,结合,由空间向量垂直的坐标关系求得的值.即可表示出.求得平面和平面的法向量,由空间向量数量积的运算求得两个平面夹角的余弦值,再根据二面角的平面角为锐角即可确定二面角的余弦值.【详解】(1)证明:∵底面,,以为坐标原点,建立如图所示的空间直角坐标系,∵,,点为棱的中点.∴,,,,,,.(2),设平面的法向量为.则,代入可得,令解得,即,设直线与平面所成角为,由直线与平面夹角可知所以直线与平面所成角的正弦值为.(3),由点在棱上,设,故,由,得,解得,即,设平面的法向量为,由,得,令,则取平面的法向量,则二面角的平面角满足,由图可知,二面角为锐二面角,故二面角的余弦值为.【点睛】本题考查了空间向量的综合应用,由空间向量证明线线垂直,求直线与平面夹角及平面与平面形成的二面角大小,计算量较大,属于中档题.19、(1)单调递增区间是(0,e),单调递减区间是(e,+∞)(2)【解析】
(1)化简函数h(x),求导,根据导数和函数的单调性的关系即可求出(2)函数f(x)恰有两个极值点x1,x2,则f′(x)=lnx﹣mx=0有两个正根,由此得到m(x2﹣x1)=lnx2﹣lnx1,m(x2+x1)=lnx2+lnx1,消参数m化简整理可得ln(x1x2)=ln•,设t,构造函数g(t)=()lnt,利用导数判断函数的单调性,求出函数的最大值即可求出x1•x2的最大值.【详解】(1)令m=2,函数h(x),∴h′(x),令h′(x)=0,解得x=e,∴当x∈(0,e)时,h′(x)>0,当x∈(e,+∞)时,h′(x)<0,∴函数h(x)单调递增区间是(0,e),单调递减区间是(e,+∞)(2)f(x)=u(x)﹣v(x)=xlnxx+1,∴f′(x)=1+lnx﹣mx﹣1=lnx﹣mx,∵函数f(x)恰有两个极值点x1,x2,∴f′(x)=lnx﹣mx=0有两个不等正根,∴lnx1﹣mx1=0,lnx2﹣mx2=0,两式相减可得lnx2﹣lnx1=m(x2﹣x1),两式相加可得m(x2+x1)=lnx2+lnx1,∴∴ln(x1x2)=ln•,设t,∵1e,∴1<t≤e,设g(t)=()lnt,∴g′(t),令φ(t)=t2﹣1﹣2tlnt,∴φ′(t)=2t﹣2(1+lnt)=2(t﹣1﹣lnt),再令p(t)=t﹣1﹣lnt,∴p′(t)=10恒成立,∴p(t)在(1,e]单调递增,∴φ′(t)=p(t)>p(1)=1﹣1﹣ln1=0,∴φ(t)在(1,e]单调递增,∴g′(t)=φ(t)>φ(1)=1﹣1﹣2ln1=0,∴g(t)在(1,e]单调递增,∴g(t)max=g(e),∴ln(x1x2),∴x1x2故x1•x2的最大值为.【点睛】本题考查了利用导数求函数的最值和最值,考查了函数与方程的思想,转化与化
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 老年人能力评估国家标准题库及答案
- 止血考试题及答案
- 生产车间如何培训新员工快速上岗
- 麻醉科麻醉前评估指导培训教程
- 口腔颌面外科学练习题含答案
- 国开作业儿科护理学-期末考试08参考(含答案)
- 2025全国“安全生产月”知识考试试题及答案
- 2025年高级育婴员试题库+参考答案
- 河北省 自考试题及答案
- 2025年高级经济师考试(农业经济)综合能力测试题及答案
- 高新技术企业申报范本
- 高中高一英语第一次月考试卷分析
- 开荒期间应知及注意事项课件
- NY 5099-2002无公害食品食用菌栽培基质安全技术要求
- GB/T 6462-2005金属和氧化物覆盖层厚度测量显微镜法
- Unit 3 Lesson 3 Memories of Christmas 课件-高一英语北师大版(2019)必修第一册
- GB/T 11352-2009一般工程用铸造碳钢件
- 学生手册正文
- 小学五年级信息技术下册教案-全册
- 高效协同课件
- 【教材解读】语篇研读-Comfort food
评论
0/150
提交评论