广西百色市西林民族高中2023学年高三一诊考试数学试卷含解析_第1页
广西百色市西林民族高中2023学年高三一诊考试数学试卷含解析_第2页
广西百色市西林民族高中2023学年高三一诊考试数学试卷含解析_第3页
广西百色市西林民族高中2023学年高三一诊考试数学试卷含解析_第4页
广西百色市西林民族高中2023学年高三一诊考试数学试卷含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023高考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.将函数的图象向右平移个周期后,所得图象关于轴对称,则的最小正值是()A. B. C. D.2.一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的体积为()A. B. C. D.3.设复数满足,则()A. B. C. D.4.已知点,是函数的函数图像上的任意两点,且在点处的切线与直线AB平行,则()A.,b为任意非零实数 B.,a为任意非零实数C.a、b均为任意实数 D.不存在满足条件的实数a,b5.已知函数的最小正周期为,且满足,则要得到函数的图像,可将函数的图像()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度6.金庸先生的武侠小说《射雕英雄传》第12回中有这样一段情节,“……洪七公道:肉只五种,但猪羊混咬是一般滋味,獐牛同嚼又是一般滋味,一共有几般变化,我可算不出了”.现有五种不同的肉,任何两种(含两种)以上的肉混合后的滋味都不一样,则混合后可以组成的所有不同的滋味种数为()A.20 B.24 C.25 D.267.若复数为虚数单位在复平面内所对应的点在虚轴上,则实数a为()A. B.2 C. D.8.已知函数,满足对任意的实数,都有成立,则实数的取值范围为()A. B. C. D.9.如图,四面体中,面和面都是等腰直角三角形,,,且二面角的大小为,若四面体的顶点都在球上,则球的表面积为()A. B. C. D.10.函数(且)的图象可能为()A. B. C. D.11.如图,在等腰梯形中,,,,为的中点,将与分别沿、向上折起,使、重合为点,则三棱锥的外接球的体积是()A. B.C. D.12.已知平面平面,且是正方形,在正方形内部有一点,满足与平面所成的角相等,则点的轨迹长度为()A. B.16 C. D.二、填空题:本题共4小题,每小题5分,共20分。13.对任意正整数,函数,若,则的取值范围是_________;若不等式恒成立,则的最大值为_________.14.已知为等差数列,为其前n项和,若,,则_______.15.如图是某几何体的三视图,俯视图中圆的两条半径长为2且互相垂直,则该几何体的体积为________.16.如图所示,在边长为4的正方形纸片中,与相交于.剪去,将剩余部分沿,折叠,使、重合,则以、、、为顶点的四面体的外接球的体积为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)若关于的方程的两根都大于2,求实数的取值范围.18.(12分)如图,三棱柱的所有棱长均相等,在底面上的投影在棱上,且∥平面(Ⅰ)证明:平面平面;(Ⅱ)求直线与平面所成角的余弦值.19.(12分)如图,已知四边形的直角梯形,∥BC,,,,为线段的中点,平面,,为线段上一点(不与端点重合).(1)若,(ⅰ)求证:PC∥平面;(ⅱ)求平面与平面所成的锐二面角的余弦值;(2)否存在实数满足,使得直线与平面所成的角的正弦值为,若存在,确定的值,若不存在,请说明理由.20.(12分)已知函数.(1)解不等式;(2)记函数的最小值为,正实数、满足,求证:.21.(12分)如图,在三棱柱中,、、分别是、、的中点.(1)证明:平面;(2)若底面是正三角形,,在底面的投影为,求到平面的距离.22.(10分)如图,在四棱锥中,,,,和均为边长为的等边三角形.(1)求证:平面平面;(2)求二面角的余弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【解析】

由函数的图象平移变换公式求出变换后的函数解析式,再利用诱导公式得到关于的方程,对赋值即可求解.【详解】由题意知,函数的最小正周期为,即,由函数的图象平移变换公式可得,将函数的图象向右平移个周期后的解析式为,因为函数的图象关于轴对称,所以,即,所以当时,有最小正值为.故选:D【点睛】本题考查函数的图象平移变换公式和三角函数诱导公式及正余弦函数的性质;熟练掌握诱导公式和正余弦函数的性质是求解本题的关键;属于中档题、常考题型.2.C【解析】

由已知中的三视图,可知该几何体是一个以俯视图为底面的三棱锥,求出底面面积,代入锥体体积公式,可得答案.【详解】由已知中的三视图,可知该几何体是一个以俯视图为底面的三棱锥,其底面面积,高,故体积,故选:.【点睛】本题考查的知识点是由三视图求几何体的体积,解决本题的关键是得到该几何体的形状.3.D【解析】

根据复数运算,即可容易求得结果.【详解】.故选:D.【点睛】本题考查复数的四则运算,属基础题.4.A【解析】

求得的导函数,结合两点斜率公式和两直线平行的条件:斜率相等,化简可得,为任意非零实数.【详解】依题意,在点处的切线与直线AB平行,即有,所以,由于对任意上式都成立,可得,为非零实数.故选:A【点睛】本题考查导数的运用,求切线的斜率,考查两点的斜率公式,以及化简运算能力,属于中档题.5.C【解析】

依题意可得,且是的一条对称轴,即可求出的值,再根据三角函数的平移规则计算可得;【详解】解:由已知得,是的一条对称轴,且使取得最值,则,,,,故选:C.【点睛】本题考查三角函数的性质以及三角函数的变换规则,属于基础题.6.D【解析】

利用组合的意义可得混合后所有不同的滋味种数为,再利用组合数的计算公式可得所求的种数.【详解】混合后可以组成的所有不同的滋味种数为(种),故选:D.【点睛】本题考查组合的应用,此类问题注意实际问题的合理转化,本题属于容易题.7.D【解析】

利用复数代数形式的乘除运算化简,再由实部为求得值.【详解】解:在复平面内所对应的点在虚轴上,,即.故选D.【点睛】本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础题.8.B【解析】

由题意可知函数为上为减函数,可知函数为减函数,且,由此可解得实数的取值范围.【详解】由题意知函数是上的减函数,于是有,解得,因此,实数的取值范围是.故选:B.【点睛】本题考查利用分段函数的单调性求参数,一般要分析每支函数的单调性,同时还要考虑分段点处函数值的大小关系,考查运算求解能力,属于中等题.9.B【解析】

分别取、的中点、,连接、、,利用二面角的定义转化二面角的平面角为,然后分别过点作平面的垂线与过点作平面的垂线交于点,在中计算出,再利用勾股定理计算出,即可得出球的半径,最后利用球体的表面积公式可得出答案.【详解】如下图所示,分别取、的中点、,连接、、,由于是以为直角等腰直角三角形,为的中点,,,且、分别为、的中点,所以,,所以,,所以二面角的平面角为,,则,且,所以,,,是以为直角的等腰直角三角形,所以,的外心为点,同理可知,的外心为点,分别过点作平面的垂线与过点作平面的垂线交于点,则点在平面内,如下图所示,由图形可知,,在中,,,所以,,所以,球的半径为,因此,球的表面积为.故选:B.【点睛】本题考查球体的表面积,考查二面角的定义,解决本题的关键在于找出球心的位置,同时考查了计算能力,属于中等题.10.D【解析】因为,故函数是奇函数,所以排除A,B;取,则,故选D.考点:1.函数的基本性质;2.函数的图象.11.A【解析】

由题意等腰梯形中的三个三角形都是等边三角形,折叠成的三棱锥是正四面体,易求得其外接球半径,得球体积.【详解】由题意等腰梯形中,又,∴,是靠边三角形,从而可得,∴折叠后三棱锥是棱长为1的正四面体,设是的中心,则平面,,,外接球球心必在高上,设外接球半径为,即,∴,解得,球体积为.故选:A.【点睛】本题考查求球的体积,解题关键是由已知条件确定折叠成的三棱锥是正四面体.12.C【解析】

根据与平面所成的角相等,判断出,建立平面直角坐标系,求得点的轨迹方程,由此求得点的轨迹长度.【详解】由于平面平面,且交线为,,所以平面,平面.所以和分别是直线与平面所成的角,所以,所以,即,所以.以为原点建立平面直角坐标系如下图所示,则,,设(点在第一象限内),由得,即,化简得,由于点在第一象限内,所以点的轨迹是以为圆心,半径为的圆在第一象限的部分.令代入原的方程,解得,故,由于,所以,所以点的轨迹长度为.故选:C【点睛】本小题主要考查线面角的概念和运用,考查动点轨迹方程的求法,考查空间想象能力和逻辑推理能力,考查数形结合的数学思想方法,属于难题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】

将代入求解即可;当为奇数时,,则转化为,设,由单调性求得的最小值;同理,当为偶数时,,则转化为,设,利用导函数求得的最小值,进而比较得到的最大值.【详解】由题,,解得.当为奇数时,,由,得,而函数为单调递增函数,所以,所以;当为偶数时,,由,得,设,,单调递增,,所以,综上可知,若不等式恒成立,则的最大值为.故答案为:(1);(2)【点睛】本题考查利用导函数求最值,考查分类讨论思想和转化思想.14.1【解析】试题分析:因为是等差数列,所以,即,又,所以,所以.故答案为1.【考点】等差数列的基本性质【名师点睛】在等差数列五个基本量,,,,中,已知其中三个量,可以根据已知条件,结合等差数列的通项公式、前项和公式列出关于基本量的方程(组)来求余下的两个量,计算时须注意整体代换思想及方程思想的应用.15.20【解析】

由三视图知该几何体是一个圆柱与一个半球的四分之三的组合,利用球体体积公式、圆柱体积公式计算即可.【详解】由三视图知,该几何体是由一个半径为2的半球的四分之三和一个底面半径2、高为4的圆柱组合而成,其体积为.故答案为:20.【点睛】本题考查三视图以及几何体体积,考查学生空间想象能力以及数学运算能力,是一道容易题.16.【解析】

将三棱锥置入正方体中,利用正方体体对角线为三棱锥外接球的直径即可得到答案.【详解】由已知,将三棱锥置入正方体中,如图所示,,故正方体体对角线长为,所以外接球半径为,其体积为.故答案为:.【点睛】本题考查三棱锥外接球的体积问题,一般在处理特殊几何体的外接球问题时,要考虑是否能将其置入正(长)方体中,是一道中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.【解析】

先令,根据题中条件得到,求解,即可得出结果.【详解】因为关于的方程的两根都大于2,令所以有,解得,所以.【点睛】本题主要考查一元二次方程根的分布问题,熟记二次函数的特征即可,属于常考题型.18.(Ⅰ)见解析(Ⅱ)【解析】

(Ⅰ)连接交于点,连接,由于平面,得出,根据线线位置关系得出,利用线面垂直的判定和性质得出,结合条件以及面面垂直的判定,即可证出平面平面;(Ⅱ)根据题意,建立空间直角坐标系,利用空间向量法分别求出和平面的法向量,利用空间向量线面角公式,即可求出直线与平面所成角的余弦值.【详解】解:(Ⅰ)证明:连接交于点,连接,则平面平面,平面,,为的中点,为的中点,平面,,平面,平面,平面平面(Ⅱ)建立如图所示空间直角坐标系,设则,,,,,设平面的法向量为,则,取得,设直线与平面所成角为,直线与平面所成角的余弦值为.【点睛】本题考查面面垂直的判定以及利用空间向量法求线面角的余弦值,考查空间想象能力和推理能力.19.(1)(ⅰ)证明见解析(ⅱ)(2)存在,【解析】

(1)(i)连接交于点,连接,,依题意易证四边形为平行四边形,从而有,,由此能证明PC∥平面(ii)推导出,以为原点建立空间直角坐标系,利用向量法求解;(2)设,求出平面的法向量,利用向量法求解.【详解】(1)(ⅰ)证明:连接交于点,连接,,因为为线段的中点,所以,因为,所以因为∥所以四边形为平行四边形.所以又因为,所以又因为平面,平面,所以平面.(ⅱ)解:如图,在平行四边形中因为,,所以以为原点建立空间直角坐标系则,,,所以,,,平面的法向量为设平面的法向量为,则,即,取,得,设平面和平面所成的锐二面角为,则所以锐二面角的余弦值为(2)设所以,,设平面的法向量为,则,取,得,因为直线与平面所成的角的正弦值为,所以解得所以存在满足,使得直线与平面所成的角的正弦值为.【点睛】此题二查线面平行的证明,考查锐二面角的余弦值的求法,考查满足线面角的正弦值的点是否存在的判断与求法,考查空间中线线,线面,面面的位置关系等知识,考查了推理能力与计算能力,属于中档题.20.(1);(2)见解析.【解析】

(1)分、、三种情况解不等式,综合可得出原不等式的的解集;(2)利用绝对值三角不等式可求得函数的最小值为,进而可得出,再将代数式与相乘,利用基本不等式求得的最小值,进而可证得结论成立.【详解】(1)当时,由,得,即,解得,此时;当时,由,得,即,解得,此时;当时,由,得,即,解得,此时.综上所述,不等式的解集为;(2),当且仅当时取等号,所以,.所以,当且仅当,即,时等号成立,所以.所以,即.【点睛】本题考查含绝对值不等式的求解,同时也考查了利用基本不等式证明不等式成立,涉及绝对值三角不等式的应用,考查运算求解能力,属于中等题.21.(1)证明见解析;(2).【解析】

(1)连接,连接、交于点,并连接,则点为的中点,利用中位线的性质得出,,利用空间平行线的传递性可得出,然后利用线面

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论