版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
质量管理七种工具制作:ZEY1. 概念将多种多样的资料,因应目的的须要分成不 同的类别,使之便利分析。2. 层别法的做法 2.1.常见的层别项目 作业员别:不同班组别 机 器:不同机器别 原材料:不同供应厂家别 作业条件:不同的温度、压力、湿度、作 业场所别 不同批别:不同时间生产的产品
层别法 2.2.明确层别的目的3. 用途 3.1.把困难的资料有系统、有目的的进行分门 别类的归纳与统计 3.2.做柏拉图前要求进行项目统计层别法4.举例 用铆接机铆接螺柱,铆接螺柱的高度与作业 员和铆接机都关系。以下为不同作业员运用 不同铆接机铆接状况,请依据人员及设备别 确认铆接高度偏高的主要缘由。层别法层别答案层别法 由以上知,从人员别来讲,造成高度偏高的主要缘由是作业员小王;从设备别来讲,造成不良的主要缘由是铆接机2。排列图法1.概念 1.1.排列图是由两个纵坐标一个横坐标几个按 凹凸依次依次排列的长方形和一条累 计百分数曲线组成. 1.2.排列图法又叫柏拉图法,是利用排列图对影 响产品品质的因素或项目按大小依次 排列,从而找出影响产品质量的主要 因素或项目,以便进行针对性品质改 善的一种工具.又称主次因素分析图 法.重点管理法.排列图法2.构成
2.1.左纵坐标表示不良项目和因素所发生的数 据,可取不合格品数、损失金额、耗费工 时 等。 2.2.右纵坐标表示累计百分数. 2.3.横坐标表示影响因素或项目,按其影响成度 大小从左到右排列.2.4.矩形表示对应因素和项目发生数据的大小.
2.5.柏拉图曲线是由每个矩形右边延长线与对应 累计百分数引横轴平行线确定的交点连成的 线.排列图法排列图法 2.6.ABC分析法 0~70% A类——造成品质问 题的主要影响因素 70~90% B类——造成品质问 题的次要影响因素 90%以上 C类——造成品质问 题的一般影响因素 在实际应用中,这种划分不是确定的,应 依据实际状况灵敏应用。一般地,抓住了 主要因素,就能解决绝大部分质量问题。
排列图法2.7.对策效果评估当抓住主要冲突实行对 策后,应再取数据重新作出新的帕累 托曲线,来推断分析所实行措施的正确 性。
排列图法3.作图步骤 3.1.收集数据 3.1.1.确定数据的分类项目,其可分为结果的 分类和缘由的分类结果分类如:不良项 目别、场所别、工程别、时间别等缘由 分类如:材料别、设备别、作业员别、 作业方法别3.1.2.确定数据的收集期间3.1.3.收集数据 3.2.作数据分项统计表
排列图法 3.2.1.将各分类项目及出现的频数按其频数从 大到小的依次填入数据分项统计表。 3.2.2.计算累计数、累计百分比,并填入统计 表。
例:某线对某月份的品质状况进行了 统 计分析,共统计出总不良数414个,不良 项为:不读碟195个,出碟噪音90个, TE
PHASE值超标45个,涂油不均 匀 65个,不启动5个,碟飞转5个,其它9个排列图法排列图法 3.3.绘制排列图 3.3.1.绘制左纵坐标、横坐标、右纵坐标;标 注坐标名称;在横坐标上标注项目刻度, 依据大小依次填写项目名称。 3.3.2.定右纵坐标刻度:在合适高度定为 100%,原点为0,匀整标出各点的数值。 3.3.3.定左纵坐标的刻度,其总次数高度应与 右纵坐标100%高度对应,总数高度确定 后,原点为0,按比例标出其它分度值.
排列图法 分度值不要出现小数,一般可在总数附 近找出一个可以多次等分的整次,在本例中 为400,400的高度值X可以依据下式求出: 414/总高度=400/X3.3.4.按项目的频数画出矩形。3.3.5.画出柏拉图曲线。3.3.6.分别从右纵坐标累计百分率为80%、90% 三处向左引平行于横轴的曲线 ,在 三条 虚线下边分别写上A类、B类、C类。 3.3.7.填写排列图的名称,标出数据。排列图法排列图法4. 绘制排列图的留意事项 4.1.纵坐标可以用件数来表示,也可以用时间、 金额来表示。以损失金额表示的排列图更 具效果,更具震撼力。 4.2.当分类项目特殊多时,排列图的横轴变得 特殊地长,因此数据的小项目应尽可能的 集中起来,列入其它之项目,置于横轴的 最右端。 4.3.A类项目不要过多,以一至二个为宜,总 项目多时也不要超过三个。假如画出的排
排列图法 出的排列图各项目频数相差很小,主次问 题不突出,应考虑更改分类项目,然后重新 画图。 4.3.留意检查图形是否完整。 4.4.影响因素应按程度大小在横坐标上从左到 右顺次排列,各因素在横轴上要等分。 4.5.二条纵坐标的比例可以取得不一样,但总 高度须一样。比如右纵坐标十等分,而左纵 坐标只八等分。 4.6.找出了主要因素并实行措施后,还要继排列图法 续运用柏拉图分析,以检查实施效果。5. 排列图的运用方法 5.1.通过排列图可以很简洁找出影响质量问题 的最主要因素或项目,即A类项目。 5.2.从以结果分析的排列图绽开到以缘由分析 的排列图,以便实行措施。 5.3.可以用作报告和记录形式,供相关部门进 行改善活动的依据或作呈报上级用。 5.4.并排对策前后的排列图,可以很简洁地评 估效果。排列图法6.练习 统计某机种某次退返品的不良项目如下: 外观丝印不良 16 不通电 92 无报警信号 210 不计数 78 马达异音 320
摇机时有声音 48
信号不能切换 5排列图法 扬声器噪音 5 马达倒转 4 地脚难拧 3 试作一张排列图,并分析主次缘由。 散布图
1. 概念 1.1.散布图:是表示两个变量的每一对观测值 用直角坐标平面上的一个点表示所成的图 形。 1.2.散布图法是运用散布图来推断各种因素对 产品质量特性有无影响及影响程度大小的 一种工具。它可以用来了解加工质量与人、 机、料、法、 环等因素之间的关系,产 品成本与原材料、动力、各种费用之间的 关系等。 1.3.变量之间两种不同的关系:
散布图
1.3.1.完全确定的函数:只要知道了一个变量就 可以求出另外一个变量,如S=πr21.3.2.相关关系: 如小孩的年龄和体重有确定的关系,只能 一般地说年龄越大,体重越大。但我们可 以通过统计得出一个小孩年龄与体重之间 的大致关系: 小孩年龄=年龄x2+7(公斤) 虽然不是全部的2周岁小孩体重都是11公斤, 但总是11公斤左右。我们把这种非确定的 散布图
依靠或制约关系叫作相关关系。相关关系不能用函数来关系表示,但可以借助统计技术——散布图来描述这种变量之间的关系。散布图
1. 几种典型的散布图散布图
3. 散布图的做法 3.1.搜集数据:作散布图的数据应搜集30组 以上,数据太小相关不明显,数据太多 计算的工作量太大。将数据填入数据表, 把缘由因素定为X,对应的因素定为Y。 3.2.打点: 3.2.1.先画纵坐标,再画横坐标;横坐标的取 值范围应包括缘由数值的最大值和最小 值,但不确定从零起先,越往右取值越 大。纵坐标的取值范围应包含结果数值 的最大值和最小值,但不确定从零起先, 越往右取值越大。纵坐标的取值范围应散布图
包含结果数值的最大值和最小值,但不一 定从零起先,越往上取值越大。 3.2.2.标上纵横坐标的名称、单位及图名。 3.2.3.标出纵轴、横轴的刻度。纵横坐标取值范 围的长度应基本相等,以利于相关关系的 分析。 3.2.4.把数据表中的各组对应数据一一按坐标位 置用坐标点表示出来。假如碰上一组数 据与另一组完全相同,则在点上加一个圈 表示重复。如碰上三组数据重复,则加上 两个圈表示。把全部数据都打上点。 散布图
4. 散布图视察与分析 4.1.比照典型图法:与前面所述的六个典型 图相比较,可以推断结果变量与缘由变 量之间的相关关系。 4.2.符号鉴定法: 4.2.1.在作好的散布图上画一条与y轴平行的P 线,使P线左右两侧的点数相等或大致相 等。 4.2.2.再画一条与x轴平行的Q线,使Q线上下两 侧的点数相等或大致相等。 4.2.3.P线和Q线将坐标平面分成四个区域。分散布图
别数出二个对角区域点数之和n13和n24,未 压线的总点数N。压在线上的点数一律不算 ,重复的点按重复次数计。 4.2.4.运用符号鉴定表。 相关图符号鉴定表中N为未压线的总点数, 对应N给出α=0.01和α=0.05的两个显著水 平的点数。在对角区域之和当中,点数比 较少的一项低于或等于哪个显著水平的点 数,就判定为这个水平的相关。显著水平 就是把原来正确但推断为错误的可能性的 大小,也称为风险率。Α值越小说明显著 水平越高,风险越小,把握性越大。散布图
5. 散布图应用的留意事项 5.1.相关的判定只限于画图所用的数据范围之 内, 不能随意延长判定范围。有延长须要 时应扩大搜集数据的范围,重新作相关图。 例如体重与年龄的关系就不具有延长性。 5.2.应将具有不同性质的数据分开作相关图, 否则将会导致不真实的判定。当我们确定要 对某个因变量和自变量之间相关关系进行研 究并采集数据时,应尽可能使影响这个因变 量的其它自变量处于稳定状态。
散布图
5.3.个别偏离分布趋势的点子,可能是特殊原 因造成的,判明缘由后,可以舍出该点。 5.4.要应用专业技术对相关分析的结果加以鉴 别,因为可能出现伪相关现象。尤其当多 个自变量都影响这个因变量的时候,出现 伪相关的可能性更大。查核表1.概念:即备忘录,将要进行查看的工作项目 一项一项地整理出来,然后定期或定时检查。2. 查核表作法: A.确定制作查核表的目的及如何收集最适当 的数据。 B.确定分类项目 C.确定查核表格式 D.确定记录数据的记号(如划记法,“正”字 法) E.记入必要事项查核表3.查核表用途 A.正确地把握现状,明白现场地问题点 B.整理原始数据 C.正确地管理工作,确定工作是否依据标准 进行 D.具体调查工作内容 E.查核,以便驾驭品质4.两类常用的查核表的作法A.点检用查核表查核表B.记录用查核表(计数用):记录用查核表 用来收集计量或计数资料,通常运用划记法。 其格式如下:
查核表5. 用途 5.1.正确地把握现状,明白现场地问题点 5.2.整理原始数据 5.3.正确地管理工作,确定工作是否依据标 准进行 5.4.具体调查工作内容 5.5.查核,以便驾驭品质查核表直方图1. 概念 1.1.直方图:将全部数据分成若干组,以组 距为底边,以该组距相应的频数为高按比 例而构成的若干矩形,即为直方图。 1.2.直方图法:通过对数据的加工整理,从而 分析和驾驭质量数量的分布状况和估算工 序不合格品率的一种方法。2. 作直方图的步骤 2.1.作频数分布表 2.1.1.概念:将数据按大小依次分组排列,反 映各组频数的统计表。 2.1.2.作法: A.搜集数据(大于50个) B.计算极差:R=Xmax-Xmin C.适当分组:总资料数与组数的关系推 荐如表所示。 D.确定组距:N=极差R/(组数K-1)(为 便于分组,N取整数)。直方图 E.确定各组界限:
最小一组的下组界=Xmin-(最小测 量单位/2)
最小一组的上组界=最小一组的下 组界+组距 最小二组的下组界=最小一组的上 组界 F.编组号,计算组的中心值,统计各组 出现的频次。直方图搜集数据计算极差适当分组确定组距确定各组界限计算各组的中心值统计各组出现的频次画坐标系,画直方,标图名对图形形态进行对比分析R=Xmax-XminN=极差R/(组数K-1)(为便于分组,N取整数)大于50个最小一组的下组界=Xmin-(最小测量单位/2)最小一组的上组界=最小一组的下组界+组距最小二组的下组界=最小一组的上组界直方图3.直方图分析
3.1.常见的几种直方图
直方图锯齿形分析:测量方法不当、读数 有问题或数据分组不 当所致。一般经过测 量方法或重新分组可 转化成对称形。直方图对称形偏向形分析:常态,左右对称,显 示制程大致稳定,一 般尺寸、重量等特性 呈这种分布。分析:可能存在人力因素、 测量误差、加工系 统误差等缘由。直方图孤岛形双峰形分析:状况与孤岛形大致 一样,只是孤岛 形表现得更突出。分析:表示存在某种异样 或变异,如加工中 出现了条件变动。直方图平顶形分析:由于加工中存在 某种缓慢而匀整 变更的倾向,如 刀具、模具等磨 损缘由。 3.2.实际分布与标准公差 3.2.1.当B充分包含在T之中,且B和T的分布 中心重合,分布满足公差要求并有相当的 余地时,工程能保证产品合格。当T远 大于B时,则存在质量过剩。3.2.2.当B虽在T之中,但中心稍有偏移,B和 T的一端(或两端)重合时,条件稍有变 化就会出现不合格品。此时应刚好调整 消误差。直方图直方图3.2.3.当B和T的界限交叉(或B大于T)并 便向一边,必定会产生不合格品。此 时应刚好调整工艺,消退系统误差, 使偶然性误差波动小规定范围。直方图4. 工程实力与工程实力指数 4.1.工程:各种生产条件的总和,包括设备、 工具、劳动者和加工对象,及在这些条 件下进行的生产过程,统称为工程。 4.2.工程实力:指工程能够满足产品质量要 求的实力。 4.3.工程实力指数:工程实力所能满足产品 质量要求的程度。工程实力指数越大, 工程实力所能满足产品质量要求的程度 越好。直方图 4.3.工程实力指数的计算: 4.3.1.当给定双向公差,公差中心(μ)与实 际分布中心(x)重合时,按下式计算: CP=T/6σ=(TU-TL)/6σ 式中σ在实际计算时因为不行能事先知 道,因此用其估计值s代替。即: CP=T/6s=(TU-TL)/6s s=h*((∑fu2/∑f)-(∑fu2/∑f)2)1/2式中f为频数,u为偏离中心值的相对距离:u=(x-x0)/h 直方图4.3.2.当给定双向公差,公差中心(μ)与实际 分布中心(x)不重合时,按下式计算: CPk=(1-K)T/6s=(1-K)*(TU-TL)/6s 其中,K为相对偏移量:K=μ-x/(T/2)
直方图
4.3.3.当给定单向公差时,按下式计算: CP=(TU-μ)/3s=(TU-x)/3s 或CP=(μ-TL)/3s=(x-TL)/3s x、μ为实际和标准规定的单向偏差 起 点值4.4.用工程实力指数来推断工艺的稳定性 依据工程实力指数的大小,可以将工艺分成个等级:
CPK>1.67 工艺实力过高,不一 定经济 1.67≥CPK>1.33 工艺实力足够,可以 允许确定的波动 1.33≥CPK>1.00 工艺实力牵强,必需 亲密留意 1.00≥CPK>0.67 工艺实力不足,可能 出现少数不合格品 0.67≥CPK 工艺实力严峻不足, 必需加以改进。直方图 4.5.例: 某线生产一个机种,定单为8000,其耗电流值是应当加以探讨和限制的重要特性,其规格上限为450mA,规格下限为410mA。QC人 员从生产现场每小时随机抽取5台机组成一个样本,共抽取25个,测得耗电流值如下表(只显示部分)直方图直方图
按公式计算各项数据如下表:直方图
进行分组和频数分布统计如下:直方图
绘制直方图如下:直方图限制图法1. 概念 1.1.限制图:是由平面坐标系中绘出的一条质量 特性值的波动曲线和三条具有统计意义的控 制线所组成的图形,它反映的是质量特性随 时间发生波动的状况。又叫管理图、管制图、 休哈特图。 1.2.限制图法:是利用限制图来供应系统缘由存 在的信息,便于查明系统性的缘由和进一步 实行对策,以保证工序处于稳定受控状态, 保证工序稳定生产合格的一种有效的统计工 具。限制图法2. 构成 2.1.限制图是由横坐标、纵坐标、质量特性 值的波动曲线和三条限制线组成。限制上 限UCL、限制下限LCL、中心 线CL是通 过搜集过去一份生 产稳定状态下的数 据计算出来的。横坐标为样本号或时间, 纵坐标是统计特性(如平均值、标准偏差、 极差R、中位 数等)。限制图法限制图法3.限制图的种类 依据测定值性质的不同,限制图可分为计量值限制图和计数值限制图两类。它们的主要用途如下:限制图法限制图法 依据用途分类,分析用限制图和管理用限制图。 以上只是统计特性值不一样,它们的作用及绘图依次是相同的。限制图法4. 限制界限的确定 4.1.限制界限的作用:依据点子是否超出限制界 限来推断工艺条件是否发生异样,从而刚好 管理、限制和订正。 4.2.3σ法则:就是取质量特性值的平均值为中心 线,取质量特性值平均值加、减3倍被控质 量特性值的标准偏差为上下限制界限,其 计 算公式如下: CL=E(X) X:样本统计量 E(X):X的平均值
限制图法 UCL=E(X)+3D(X) D(X):X的标准偏差 LCL=E(X)-3D(X) 实际应用时,是用限制图系数来计算限制界 限的,限制系数是在上面的三个基本计算公 式的基础上运用有关学问推导求得的。常用 的限制系数见下表:限制图法4. 限制界限的确定 4.1. 限制界限的作用:依据点子是否超出限制界限来推断工艺条件是否发 生异样,从而刚好管理、限制和订正。 4.2. 3σ法则:就是取质量特性值的平均值为中心线,取质量特性值平均 值加、减3倍被控质量特性值的标准偏差为上下限制界限,其计算公 式如下: CL=E(X) X:样本统计量 E(X):X的平均值 UCL=E(X)+3D(X) D(X):X的标准偏差 LCL=E(X)-3D(X) 实际应用时,是用限制图系数来计算限制界限的,限制系数是在上面 的三个基本计算公式的基础上运用有关学问推导求得的。常用的限制 系数见下表:限制图法 4.3. 实行3σ法则的缘由: 第一种推断错误:将正常生产过程推断为不正常生产。 其次种推断错误:将不正常生产过程推断为正常生产。 限制界限的确定以两种推断错误总损失最小为原则。 实行σ、2σ、3σ时,被控质量特性值越出限制界限[(u+σ,u-σ) 、(u+2σ,u-2σ)、(u+3σ,u-3σ)、(u+4σ,u-4σ)]]的概率 分 别是31.73%、4.55%、0.27%、0.006%。 当接受3σ法则确定限制界限时,符合经济合理的原则。 4.4. 限制图限制质量的原理 质量特性值落入(u+3σ,u-3σ)范围内的概率值是99.73%,说明当 限制界限取作u±3σ时,1000个数据只有三个可能落入限制界限以 外。这种状况在绘制限制图的有限次测量中一般不会发生,一旦发 生,说明小概率事务发生了,则认为生产过程发生了异样,应立刻查 明缘由,予以解除。一般6σ<T,当点子越出限制界限,只要未越出 公差界限T时,只有产生废品的趋势,但没有产生废品,所以限制图 能起报警和预防的作用,达到限制质量的目的。限制图法 4.3. 实行3σ法则的缘由: 第一种推断错误:将正常生产过程推断为不正常生产。 其次种推断错误:将不正常生产过程推断为正常生产。 限制界限的确定以两种推断错误总损失最小为原则。 实行σ、2σ、3σ时,被控质量特性值越出限制界限[(u+σ,u-σ) 、(u+2σ,u-2σ)、(u+3σ,u-3σ)、(u+4σ,u-4σ)]]的概率 分 别是31.73%、4.55%、0.27%、0.006%。 当接受3σ法则确定限制界限时,符合经济合理的原则。 4.4. 限制图限制质量的原理 质量特性值落入(u+3σ,u-3σ)范围内的概率值是99.73%,说明当 限制界限取作u±3σ时,1000个数据只有三个可能落入限制界限以 外。这种状况在绘制限制图的有限次测量中一般不会发生,一旦发 生,说明小概率事务发生了,则认为生产过程发生了异样,应立刻查 明缘由,予以解除。一般6σ<T,当点子越出限制界限,只要未越出 公差界限T时,只有产生废品的趋势,但没有产生废品,所以限制图 能起报警和预防的作用,达到限制质量的目的。限制图法5. 平均数极差限制图(-R)图 平均数是指被控质量特性的(一组的)算数平均数。极差是一组质量特性数据中最大值与最小值之差。平均数极差限制图包括图和R图,图限制平均值的变更,R图限制极差值的变更,两者结合在一起可以充分地反映质量波动变更。6. 平均数极差计算公式 平均数:=sum(x1,xn)/n n:每组个数 平均数的平均值:x=sum(x1,xm)/m m:组数 极差:R=xjmax-xjmin 极差平均值:R=sum(R1,Rm)/m 平均数的上下限制界限: UCLx=x+A2R UCLx=x-A2R 极差的上下限制界限: UCLR=D2σ 或 UCLR=D4R LCLR=D1σ LCLR=D3R限制图法7. 限制图的画法 各种限制图的画法是一样的。下面是一个绘制平均数极差限制图的例子: 某线生产一个机种,定单为8000,其耗电流值是应当加以探讨和限制的重要特性。QC人员从生产现场每小时随机抽取5台机组成一个样本,共抽取25个,测得耗电流值如下表(为了能看清晰,下面仅显示部分):限制图法 7.1. 计算各组的平均值和极差 7.2. 计算各组的平均值的平均值、极差的平均值 7.3. 计算限制图的限制界限 7.4. 绘制限制图:将中心线CL、限制上限UCL、限制下限LCL分别绘入 平均数限制图和极差限制图内,将各组的平均数和极差分别描在平均 数限制图和极差限制图内,并以实线连接之。见下页图: 7.5. 视察图可知,无论是平均数限制图还是极差限制图,其全部的点均在 限制界限内,没有越出限制界限的点,并且没有出现点子的排列有缺 陷(下面讲解并描述),可认为过程处于稳定状态。 7.6. 以同样的方法对该耗电流接着抽样和制图,而且不对该制程作任何调 整,仅当限制图显示异样时,才对该过程进行调整: A.找寻缘由 B.改善对策 C.再发防止对策 对策后再绘制新的分析用管制图。限制图法下面是平均数限制图
限制图法下面是极差限制图限制图法8. 限制图的视察与分析 8.1. 工序处于稳定受控状态的推断基准 当限制图上的点子分布同时满足下列二个条件时,则判工序处于稳定 受控状态: (1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年北京协和医院肿瘤内科合同制科研助理招聘备考题库及1套参考答案详解
- 中山大学附属第三医院粤东医院2026年合同人员招聘备考题库及一套参考答案详解
- 商标代理合同15篇
- 2025年临清市财政局(国资局)公开招聘市属国有企业副总经理的备考题库及1套参考答案详解
- 2025年北京高中合格考政治(第二次)试题和答案
- (2025)廉洁答题题库及答案
- 甘肃社区工作者村文书招聘考试真题2024
- 2025年台州市自然资源和规划局黄岩分局公开招聘编制外工作人员备考题库附答案详解
- 2025年中国人民银行清算总中心直属企业银清企业服务(北京)有限公司公开招聘备考题库完整参考答案详解
- 2025年石狮市人民政府湖滨街道办事处公开招聘编外工作人员备考题库有答案详解
- 合法断绝母子关系协议书范文
- 北京市西城区2023-2024学年三年级上学期语文期末试卷
- 河北省石家庄市裕华区石家庄市第四十中学2024-2025学年七年级上学期期中地理试题(含答案)
- 手术清点记录评分标准
- 中国戏曲剧种鉴赏智慧树知到期末考试答案章节答案2024年上海戏剧学院等跨校共建
- pet薄膜生产工艺
- 二年级【语文(统编版)】语文园地一(第一课时)课件
- 肝脏的营养与保健知识讲座
- 2024届辽宁省抚顺市名校数学九年级第一学期期末达标检测模拟试题含解析
- 2023年广东省佛山市顺德区小升初数学试卷(含答案)
- 区域经济空间结构理论之增长极理论
评论
0/150
提交评论