版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年高考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.马林●梅森是17世纪法国著名的数学家和修道士,也是当时欧洲科学界一位独特的中心人物,梅森在欧几里得、费马等人研究的基础上对2p﹣1作了大量的计算、验证工作,人们为了纪念梅森在数论方面的这一贡献,将形如2P﹣1(其中p是素数)的素数,称为梅森素数.若执行如图所示的程序框图,则输出的梅森素数的个数是()A.3 B.4 C.5 D.62.已知函数的图象在点处的切线方程是,则()A.2 B.3 C.-2 D.-33.在边长为2的菱形中,,将菱形沿对角线对折,使二面角的余弦值为,则所得三棱锥的外接球的表面积为()A. B. C. D.4.若复数,则()A. B. C. D.205.已知函数的导函数为,记,,…,N.若,则()A. B. C. D.6.已知正项等比数列中,存在两项,使得,,则的最小值是()A. B. C. D.7.在三角形中,,,求()A. B. C. D.8.使得的展开式中含有常数项的最小的n为()A. B. C. D.9.设为虚数单位,为复数,若为实数,则()A. B. C. D.10.为比较甲、乙两名高二学生的数学素养,对课程标准中规定的数学六大素养进行指标测验(指标值满分为5分,分值高者为优),根据测验情况绘制了如图所示的六大素养指标雷达图,则下面叙述正确的是()A.乙的数据分析素养优于甲B.乙的数学建模素养优于数学抽象素养C.甲的六大素养整体水平优于乙D.甲的六大素养中数据分析最差11.已知双曲线C:1(a>0,b>0)的焦距为8,一条渐近线方程为,则C为()A. B.C. D.12.设函数,若函数有三个零点,则()A.12 B.11 C.6 D.3二、填空题:本题共4小题,每小题5分,共20分。13.已知向量,,,若,则______.14.展开式中项系数为160,则的值为______.15.设,满足条件,则的最大值为__________.16.已知,,则与的夹角为.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知与有两个不同的交点,其横坐标分别为().(1)求实数的取值范围;(2)求证:.18.(12分)设为实数,已知函数,.(1)当时,求函数的单调区间:(2)设为实数,若不等式对任意的及任意的恒成立,求的取值范围;(3)若函数(,)有两个相异的零点,求的取值范围.19.(12分)如图,在四棱锥中,底面,,,,为的中点,是上的点.(1)若平面,证明:平面.(2)求二面角的余弦值.20.(12分)已知在等比数列中,.(1)求数列的通项公式;(2)若,求数列前项的和.21.(12分)已知函数的定义域为.(1)求实数的取值范围;(2)设实数为的最小值,若实数,,满足,求的最小值.22.(10分)在平面直角坐标系中,点,直线的参数方程为为参数),以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为.(1)求曲线的直角坐标方程;(2)若直线与曲线相交于不同的两点是线段的中点,当时,求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【解析】
模拟程序的运行即可求出答案.【详解】解:模拟程序的运行,可得:p=1,S=1,输出S的值为1,满足条件p≤7,执行循环体,p=3,S=7,输出S的值为7,满足条件p≤7,执行循环体,p=5,S=31,输出S的值为31,满足条件p≤7,执行循环体,p=7,S=127,输出S的值为127,满足条件p≤7,执行循环体,p=9,S=511,输出S的值为511,此时,不满足条件p≤7,退出循环,结束,故若执行如图所示的程序框图,则输出的梅森素数的个数是5,故选:C.【点睛】本题主要考查程序框图,属于基础题.2.B【解析】
根据求出再根据也在直线上,求出b的值,即得解.【详解】因为,所以所以,又也在直线上,所以,解得所以.故选:B【点睛】本题主要考查导数的几何意义,意在考查学生对这些知识的理解掌握水平.3.D【解析】
取AC中点N,由题意得即为二面角的平面角,过点B作于O,易得点O为的中心,则三棱锥的外接球球心在直线BO上,设球心为,半径为,列出方程即可得解.【详解】如图,由题意易知与均为正三角形,取AC中点N,连接BN,DN,则,,即为二面角的平面角,过点B作于O,则平面ACD,由,可得,,,即点O为的中心,三棱锥的外接球球心在直线BO上,设球心为,半径为,,,解得,三棱锥的外接球的表面积为.故选:D.【点睛】本题考查了立体图形外接球表面积的求解,考查了空间想象能力,属于中档题.4.B【解析】
化简得到,再计算模长得到答案.【详解】,故.故选:.【点睛】本题考查了复数的运算,复数的模,意在考查学生的计算能力.5.D【解析】
通过计算,可得,最后计算可得结果.【详解】由题可知:所以所以猜想可知:由所以所以故选:D【点睛】本题考查导数的计算以及不完全归纳法的应用,选择题、填空题可以使用取特殊值,归纳猜想等方法的使用,属中档题.6.C【解析】
由已知求出等比数列的公比,进而求出,尝试用基本不等式,但取不到等号,所以考虑直接取的值代入比较即可.【详解】,,或(舍).,,.当,时;当,时;当,时,,所以最小值为.故选:C.【点睛】本题考查等比数列通项公式基本量的计算及最小值,属于基础题.7.A【解析】
利用正弦定理边角互化思想结合余弦定理可求得角的值,再利用正弦定理可求得的值.【详解】,由正弦定理得,整理得,由余弦定理得,,.由正弦定理得.故选:A.【点睛】本题考查利用正弦定理求值,涉及正弦定理边角互化思想以及余弦定理的应用,考查计算能力,属于中等题.8.B【解析】二项式展开式的通项公式为,若展开式中有常数项,则,解得,当r取2时,n的最小值为5,故选B【考点定位】本题考查二项式定理的应用.9.B【解析】
可设,将化简,得到,由复数为实数,可得,解方程即可求解【详解】设,则.由题意有,所以.故选:B【点睛】本题考查复数的模长、除法运算,由复数的类型求解对应参数,属于基础题10.C【解析】
根据题目所给图像,填写好表格,由表格数据选出正确选项.【详解】根据雷达图得到如下数据:数学抽象逻辑推理数学建模直观想象数学运算数据分析甲454545乙343354由数据可知选C.【点睛】本题考查统计问题,考查数据处理能力和应用意识.11.A【解析】
由题意求得c与的值,结合隐含条件列式求得a2,b2,则答案可求.【详解】由题意,2c=8,则c=4,又,且a2+b2=c2,解得a2=4,b2=12.∴双曲线C的方程为.故选:A.【点睛】本题考查双曲线的简单性质,属于基础题.12.B【解析】
画出函数的图象,利用函数的图象判断函数的零点个数,然后转化求解,即可得出结果.【详解】作出函数的图象如图所示,令,由图可得关于的方程的解有两个或三个(时有三个,时有两个),所以关于的方程只能有一个根(若有两个根,则关于的方程有四个或五个根),由,可得的值分别为,则故选B.【点睛】本题考查数形结合以及函数与方程的应用,考查转化思想以及计算能力,属于常考题型.二、填空题:本题共4小题,每小题5分,共20分。13.-1【解析】
由向量垂直得向量的数量积为0,根据数量积的坐标运算可得结论.【详解】由已知,∵,∴,.故答案为:-1.【点睛】本题考查向量垂直的坐标运算.掌握向量垂直与数量积的关系是解题关键.14.-2【解析】
表示该二项式的展开式的第r+1项,令其指数为3,再代回原表达式构建方程求得答案.【详解】该二项式的展开式的第r+1项为令,所以,则故答案为:【点睛】本题考查由二项式指定项的系数求参数,属于简单题.15.【解析】
作出可行域,由得,平移直线,数形结合可求的最大值.【详解】作出可行域如图所示由得,则是直线在轴上的截距.平移直线,当直线经过可行域内的点时,最小,此时最大.解方程组,得,..故答案为:.【点睛】本题考查简单的线性规划,属于基础题.16.【解析】
根据已知条件,去括号得:,三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1);(2)见解析【解析】
(1)利用导数研究的单调性,分析函数性质,数形结合,即得解;(2)构造函数,可证得:,,分析直线,与从左到右交点的横坐标,在,处的切线即得解.【详解】(1)设函数,,令,令故在单调递减,在单调递增,∴,∵时;;时.(2)①过点,的直线为,则令,,,.②过点,的直线为,则,在上单调递增.③设直线,与从左到右交点的横坐标依次为,,由图知.④在,处的切线分别为,,同理可以证得,.记直线与两切线和从左到右交点的横坐标依次为,.【点睛】本题考查了函数与导数综合,考查了学生数形结合,综合分析,转化划归,逻辑推理,数学运算的能力,属于较难题.18.(1)函数单调减区间为;单调增区间为.(2)(3)【解析】
(1)据导数和函数单调性的关系即可求出;(2)分离参数,可得对任意的及任意的恒成立,构造函数,利用导数求出函数的最值即可求出的范围;(3)先求导,再分类讨论,根据导数和函数单调性以及最值得关系即可求出的范围【详解】解:(1)当时,因为,当时,;当时,.所以函数单调减区间为;单调增区间为.(2)由,得,由于,所以对任意的及任意的恒成立,由于,所以,所以对任意的恒成立,设,,则,所以函数在上单调递减,在上单调递增,所以,所以.(3)由,得,其中.①若时,则,所以函数在上单调递增,所以函数至多有一个零点,不合题意;②若时,令,得.由第(2)小题,知:当时,,所以,所以,所以当时,函数的值域为.所以,存在,使得,即,①且当时,,所以函数在上单调递增,在上单调递减.因为函数有两个零点,,所以.②设,,则,所以函数在单调递增,由于,所以当时,.所以,②式中的,又由①式,得.由第(1)小题可知,当时,函数在上单调递减,所以,即.当时,(ⅰ)由于,所以得,又因为,且函数在上单调递减,函数的图象在上不间断,所以函数在上恰有一个零点;(ⅱ)由于,令,设,,由于时,,,所以设,即.由①式,得,当时,,且,同理可得函数在上也恰有一个零点.综上,.【点睛】本题考查含参数的导数的单调性,利用导数求不等式恒成立问题,以及考查函数零点问题,考查学生的计算能力,是综合性较强的题.19.(1)证明见解析(2)【解析】
(1)因为,利用线面平行的判定定理可证出平面,利用点线面的位置关系,得出和,由于底面,利用线面垂直的性质,得出,且,最后结合线面垂直的判定定理得出平面,即可证出平面.(2)由(1)可知,,两两垂直,建立空间直角坐标系,标出点坐标,运用空间向量坐标运算求出所需向量,分别求出平面和平面的法向量,最后利用空间二面角公式,即可求出的余弦值.【详解】(1)证明:因为,平面,平面,所以平面,因为平面,平面,所以可设平面平面,又因为平面,所以.因为平面,平面,所以,从而得.因为底面,所以.因为,所以.因为,所以平面.综上,平面.(2)解:由(1)可得,,两两垂直,以为原点,,,所在直线分别为,,轴,建立如图所示的空间直角坐标系.因为,所以,则,,,,所以,,,.设是平面的法向量,由取取,得.设是平面的法向量,由得取,得,所以,即的余弦值为.【点睛】本题考查线面垂直的判定和空间二面角的计算,还运用线面平行的性质、线面垂直的判定定理、点线面的位置关系、空间向量的坐标运算等,同时考查学生的空间想象能力和逻辑推理能力.20.(1)(2)【解析】
(1)由基本量法,求出公比后可得通项公式;(2)求出,用裂项相消法求和.【详解】解:(1)设等比数列的公比为又因为,所以解得(舍)或所以,即(2)据(1)求解知,,所以所以【点睛】本题考查求等比数列的通项公式,考查裂项相消法求和.解题方法是基本量法.基本量法是解决等差数列和等比数列的基本方法,务必掌握.21.(1);(2)【解析】
(1)首先通过对绝对值内式子符号的讨论,将不等式转化为一元一次不等式组,再分别解各不等式组,最后求各不等式组解集的并集,得到所求不等式的解集;(2)首先确定m的值,然后利用柯西不等式即可证得题中的不等式.【详解】(1)因为函数定义域为,即恒成立,所以恒成立由单调性可知当时,有最大值为4,即;(2)由(1)知,,由柯西不等式知所以,即的最小值为.当且仅当,,时,等号成立【点睛】本题主要考查绝对值不等式的解法,柯西不等式及其应用,意在考查学生的转化能力和计算求解能力.22.(1);(2).【解析】
(1)在已知极坐标方程两边同时乘以ρ后,利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2可得曲线C的直角坐标方程;(2)联立直线l的参数方程与x2=4y由韦达定理以及参数的几何意义和弦长公式可得弦长与
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电影院服务质量监控与考核制度
- 超市员工保密制度
- 采购业务风险识别与应对制度
- 办公室员工培训效果跟踪总结制度
- 办公室员工加班与休息时间制度
- 养老院老人健康监测人员表彰制度
- 2026年深圳大学附属光明学校招聘教辅人员备考题库及1套完整答案详解
- 养老院定期体检制度
- 四川大学华西厦门医院2026年应届毕业生招录备考题库及1套参考答案详解
- 2026年机械工业北京电工技术经济研究所招聘备考题库及参考答案详解1套
- 护理查房与病例讨论区别
- 公司特殊贡献奖管理制度
- T/CA 105-2019手机壳套通用规范
- 2025-2031年中国汽车维修设备行业市场全景评估及产业前景研判报告
- 门窗拆除合同协议书范本
- GB/T 1040.1-2025塑料拉伸性能的测定第1部分:总则
- 重症胰腺炎的中医护理
- SL631水利水电工程单元工程施工质量验收标准第3部分:地基处理与基础工程
- 2024年高中语文选择性必修上册古诗文情境式默写(含答案)
- 中央2025年全国妇联所属在京事业单位招聘93人笔试历年参考题库附带答案详解-1
- 部编人教版4年级上册语文期末复习(单元复习+专项复习)教学课件
评论
0/150
提交评论