2023届福建省宁德市重点名校中考考前最后一卷数学试卷含解析_第1页
2023届福建省宁德市重点名校中考考前最后一卷数学试卷含解析_第2页
2023届福建省宁德市重点名校中考考前最后一卷数学试卷含解析_第3页
2023届福建省宁德市重点名校中考考前最后一卷数学试卷含解析_第4页
2023届福建省宁德市重点名校中考考前最后一卷数学试卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年中考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列判断正确的是()A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.“a是实数,|a|≥0”是不可能事件2.下列各式中,正确的是()A.t5·t5=2t5B.t4+t2=t6C.t3·t4=t12D.t2·t3=t53.计算﹣1﹣(﹣4)的结果为()A.﹣3 B.3 C.﹣5 D.54.抛物线的顶点坐标是()A.(2,3) B.(-2,3) C.(2,-3) D.(-2,-3)5.如图,⊙O的直径AB=2,C是弧AB的中点,AE,BE分别平分∠BAC和∠ABC,以E为圆心,AE为半径作扇形EAB,π取3,则阴影部分的面积为()A.﹣4 B.7﹣4 C.6﹣ D.6.已知二次函数y=ax2+bx+c的图像经过点(0,m)、(4、m)、(1,n),若n<m,则()A.a>0且4a+b=0 B.a<0且4a+b=0C.a>0且2a+b=0 D.a<0且2a+b=07.如图,这是根据某班40名同学一周的体育锻炼情况绘制的条形统计图,根据统计图提供的信息,可得到该班40名同学一周参加体育锻炼时间的众数、中位数分别是()A.8,9 B.8,8.5 C.16,8.5 D.16,10.58.如图,O为原点,点A的坐标为(3,0),点B的坐标为(0,4),⊙D过A、B、O三点,点C为上一点(不与O、A两点重合),则cosC的值为()A. B. C. D.9.如图,△ABC是等腰直角三角形,∠A=90°,BC=4,点P是△ABC边上一动点,沿B→A→C的路径移动,过点P作PD⊥BC于点D,设BD=x,△BDP的面积为y,则下列能大致反映y与x函数关系的图象是()A.B.C.D.10.已知⊙O的半径为10,圆心O到弦AB的距离为5,则弦AB所对的圆周角的度数是()A.30° B.60° C.30°或150° D.60°或120°11.用加减法解方程组时,如果消去y,最简捷的方法是()A.①×4﹣②×3 B.①×4+②×3 C.②×2﹣① D.②×2+①12.“赶陀螺”是一项深受人们喜爱的运动.如图所示是一个陀螺的立体结构图.已知底面圆的直径AB=8cm,圆柱的高BC=6cm,圆锥的高CD=3cm,则这个陀螺的表面积是()A.68πcm2 B.74πcm2 C.84πcm2 D.100πcm2二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,已知圆锥的底面⊙O的直径BC=6,高OA=4,则该圆锥的侧面展开图的面积为.14.如图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是___.15.不等式-2x+3>0的解集是___________________16.如图,在Rt△ABC中,∠ACB=90°,AB=5,AC=3,点D是BC上一动点,连接AD,将△ACD沿AD折叠,点C落在点E处,连接DE交AB于点F,当△DEB是直角三角形时,DF的长为_____.17.如图,四边形ABCD中,E,F,G,H分别是边AB、BC、CD、DA的中点.若四边形EFGH为菱形,则对角线AC、BD应满足条件_____.18.某公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为_________元.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在平行四边形中,的平分线与边相交于点.(1)求证;(2)若点与点重合,请直接写出四边形是哪种特殊的平行四边形.20.(6分)已知是上一点,.如图①,过点作的切线,与的延长线交于点,求的大小及的长;如图②,为上一点,延长线与交于点,若,求的大小及的长.21.(6分)小明、小刚和小红打算各自随机选择本周日的上午或下午去扬州马可波罗花世界游玩.小明和小刚都在本周日上午去游玩的概率为________;求他们三人在同一个半天去游玩的概率.22.(8分)如图,一个长方形运动场被分隔成A、B、A、B、C共5个区,A区是边长为am的正方形,C区是边长为bm的正方形.列式表示每个B区长方形场地的周长,并将式子化简;列式表示整个长方形运动场的周长,并将式子化简;如果a=20,b=10,求整个长方形运动场的面积.23.(8分)如图,在矩形ABCD中,对角线AC的垂直平分线EF分别交AD、AC、BC于点E、O、F,连接CE和AF.(1)求证:四边形AECF为菱形;(2)若AB=4,BC=8,求菱形AECF的周长.24.(10分)先化简,再求值:(﹣m+1)÷,其中m的值从﹣1,0,2中选取.25.(10分)如图,已知:AD和BC相交于点O,∠A=∠C,AO=2,BO=4,OC=3,求OD的长.26.(12分)某超市预测某饮料会畅销、先用1800元购进一批这种饮料,面市后果然供不应求,又用8100元购进这种饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.第一批饮料进货单价多少元?若两次进饮料都按同一价格销售,两批全部售完后,获利不少于2700元,那么销售单价至少为多少元?27.(12分)已知如图,在△ABC中,∠B=45°,点D是BC边的中点,DE⊥BC于点D,交AB于点E,连接CE.(1)求∠AEC的度数;(2)请你判断AE、BE、AC三条线段之间的等量关系,并证明你的结论.

参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【解析】

直接利用概率的意义以及随机事件的定义分别分析得出答案.【详解】A、任意掷一枚质地均匀的硬币10次,一定有5次正面向上,错误;B、天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨,错误;C、“篮球队员在罚球线上投篮一次,投中”为随机事件,正确;D、“a是实数,|a|≥0”是必然事件,故此选项错误.故选C.【点睛】此题主要考查了概率的意义以及随机事件的定义,正确把握相关定义是解题关键.2、D【解析】选项A,根据同底数幂的乘法可得原式=t10;选项B,不是同类项,不能合并;选项C,根据同底数幂的乘法可得原式=t7;选项D,根据同底数幂的乘法可得原式=t5,四个选项中只有选项D正确,故选D.3、B【解析】

原式利用减法法则变形,计算即可求出值.【详解】,故选:B.【点睛】本题主要考查了有理数的加减,熟练掌握有理数加减的运算法则是解决本题的关键.4、A【解析】

已知解析式为顶点式,可直接根据顶点式的坐标特点,求顶点坐标.【详解】解:y=(x-2)2+3是抛物线的顶点式方程,根据顶点式的坐标特点可知,顶点坐标为(2,3).故选A.【点睛】此题主要考查了二次函数的性质,关键是熟记:顶点式y=a(x-h)2+k,顶点坐标是(h,k),对称轴是x=h.5、A【解析】∵O的直径AB=2,∴∠C=90°,∵C是弧AB的中点,∴,∴AC=BC,∴∠CAB=∠CBA=45°,∵AE,BE分别平分∠BAC和∠ABC,∴∠EAB=∠EBA=22.5°,∴∠AEB=180°−(∠BAC+∠CBA)=135°,连接EO,∵∠EAB=∠EBA,∴EA=EB,∵OA=OB,∴EO⊥AB,∴EO为Rt△ABC内切圆半径,∴S△ABC=(AB+AC+BC)⋅EO=AC⋅BC,∴EO=−1,∴AE2=AO2+EO2=12+(−1)2=4−2,∴扇形EAB的面积==,△ABE的面积=AB⋅EO=−1,∴弓形AB的面积=扇形EAB的面积−△ABE的面积=,∴阴影部分的面积=O的面积−弓形AB的面积=−()=−4,故选:A.6、A【解析】

由图像经过点(0,m)、(4、m)可知对称轴为x=2,由n<m知x=1时,y的值小于x=0时y的值,根据抛物线的对称性可知开口方向,即可知道a的取值.【详解】∵图像经过点(0,m)、(4、m)∴对称轴为x=2,则,∴4a+b=0∵图像经过点(1,n),且n<m∴抛物线的开口方向向上,∴a>0,故选A.【点睛】此题主要考查抛物线的图像,解题的关键是熟知抛物线的对称性.7、A【解析】

根据中位数、众数的概念分别求得这组数据的中位数、众数.【详解】解:众数是一组数据中出现次数最多的数,即8;而将这组数据从小到大的顺序排列后,处于20,21两个数的平均数,由中位数的定义可知,这组数据的中位数是9.故选A.【点睛】考查了中位数、众数的概念.本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数.8、D【解析】

如图,连接AB,由圆周角定理,得∠C=∠ABO,在Rt△ABO中,OA=3,OB=4,由勾股定理,得AB=5,∴.故选D.9、B【解析】解:过A点作AH⊥BC于H,∵△ABC是等腰直角三角形,∴∠B=∠C=45°,BH=CH=AH=12BC=2,当0≤x≤2时,如图1,∵∠B=45°,∴PD=BD=x,∴y=12•x•x=当2<x≤4时,如图2,∵∠C=45°,∴PD=CD=4﹣x,∴y=12•(4﹣x)•x=-10、D【解析】【分析】由图可知,OA=10,OD=1.根据特殊角的三角函数值求出∠AOB的度数,再根据圆周定理求出∠C的度数,再根据圆内接四边形的性质求出∠E的度数即可.【详解】由图可知,OA=10,OD=1,在Rt△OAD中,∵OA=10,OD=1,AD==,∴tan∠1=,∴∠1=60°,同理可得∠2=60°,∴∠AOB=∠1+∠2=60°+60°=120°,∴∠C=60°,∴∠E=180°-60°=120°,即弦AB所对的圆周角的度数是60°或120°,故选D.【点睛】本题考查了圆周角定理、圆内接四边形的对角互补、解直角三角形的应用等,正确画出图形,熟练应用相关知识是解题的关键.11、D【解析】试题解析:用加减法解方程组时,如果消去y,最简捷的方法是②×2+①,故选D.12、C【解析】试题分析:∵底面圆的直径为8cm,高为3cm,∴母线长为5cm,∴其表面积=π×4×5+42π+8π×6=84πcm2,故选C.考点:圆锥的计算;几何体的表面积.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、15π.【解析】试题分析:∵OB=BC=3,OA=4,由勾股定理,AB=5,侧面展开图的面积为:×6π×5=15π.故答案为15π.考点:圆锥的计算.14、50°【解析】

先根据三角形外角的性质求出∠BEF的度数,再根据平行线的性质得到∠2的度数.【详解】如图所示:

∵∠BEF是△AEF的外角,∠1=20°,∠F=30°,

∴∠BEF=∠1+∠F=50°,

∵AB∥CD,

∴∠2=∠BEF=50°,

故答案是:50°.【点睛】考查了平行线的性质,解题的关键是掌握、运用三角形外角的性质(三角形的一个外角等于与它不相邻的两个内角的和).15、x<【解析】

根据解一元一次不等式基本步骤:移项、系数化为1可得.【详解】移项,得:-2x>-3,系数化为1,得:x<,故答案为x<.【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.16、或【解析】试题分析:如图4所示;点E与点C′重合时.在Rt△ABC中,BC==4.由翻折的性质可知;AE=AC=3、DC=DE.则EB=2.设DC=ED=x,则BD=4﹣x.在Rt△DBE中,DE2+BE2=DB2,即x2+22=(4﹣x)2.解得:x=.∴DE=.如图2所示:∠EDB=90时.由翻折的性质可知:AC=AC′,∠C=∠C′=90°.∵∠C=∠C′=∠CDC′=90°,∴四边形ACDC′为矩形.又∵AC=AC′,∴四边形ACDC′为正方形.∴CD=AC=3.∴DB=BC﹣DC=4﹣3=4.∵DE∥AC,∴△BDE∽△BCA.∴,即.解得:DE=.点D在CB上运动,∠DBC′<90°,故∠DBC′不可能为直角.考点:翻折变换(折叠问题).17、AC=BD.【解析】试题分析:添加的条件应为:AC=BD,把AC=BD作为已知条件,根据三角形的中位线定理可得,HG平行且等于AC的一半,EF平行且等于AC的一半,根据等量代换和平行于同一条直线的两直线平行,得到HG和EF平行且相等,所以EFGH为平行四边形,又EH等于BD的一半且AC=BD,所以得到所证四边形的邻边EH与HG相等,所以四边形EFGH为菱形.试题解析:添加的条件应为:AC=BD.证明:∵E,F,G,H分别是边AB、BC、CD、DA的中点,∴在△ADC中,HG为△ADC的中位线,所以HG∥AC且HG=AC;同理EF∥AC且EF=AC,同理可得EH=BD,则HG∥EF且HG=EF,∴四边形EFGH为平行四边形,又AC=BD,所以EF=EH,∴四边形EFGH为菱形.考点:1.菱形的性质;2.三角形中位线定理.18、28【解析】设这种电子产品的标价为x元,由题意得:0.9x−21=21×20%,解得:x=28,所以这种电子产品的标价为28元.故答案为28.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)见解析;(2)菱形.【解析】

(1)根据角平分线的性质可得∠ADE=∠CDE,再由平行线的性质可得AB∥CD,易得AD=AE,从而可证得结论;(2)若点与点重合,可证得AD=AB,根据邻边相等的平行四边形是菱形即可作出判断.【详解】(1)∵DE平分∠ADC,∴∠ADE=∠CDE.∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,AD=BC,AB=CD.∵∠AED=∠CDE.∴∠ADE=∠AED.∴AD=AE.∴BC=AE.∵AB=AE+EB.∴BE+BC=CD.(2)菱形,理由如下:由(1)可知,AD=AE,∵点E与B重合,∴AD=AB.∵四边形ABCD是平行四边形∴平行四边形ABCD为菱形.【点睛】本题考查了平行四边形的性质,平行线的性质,等腰三角形的性质,菱形的性质,熟练掌握各知识是解题的关键.20、(Ⅰ),PA=4;(Ⅱ),【解析】

(Ⅰ)易得△OAC是等边三角形即∠AOC=60°,又由PC是○O的切线故PC⊥OC,即∠OCP=90°可得∠P的度数,由OC=4可得PA的长度(Ⅱ)由(Ⅰ)知△OAC是等边三角形,易得∠APC=45°;过点C作CD⊥AB于点D,易得AD=AO=CO,在Rt△DOC中易得CD的长,即可求解【详解】解:(Ⅰ)∵AB是○O的直径,∴OA是○O的半径.∵∠OAC=60°,OA=OC,∴△OAC是等边三角形.∴∠AOC=60°.∵PC是○O的切线,OC为○O的半径,∴PC⊥OC,即∠OCP=90°∴∠P=30°.∴PO=2CO=8.∴PA=PO-AO=PO-CO=4.(Ⅱ)由(Ⅰ)知△OAC是等边三角形,∴∠AOC=∠ACO=∠OAC=60°∴∠AQC=30°.∵AQ=CQ,∴∠ACQ=∠QAC=75°∴∠ACQ-∠ACO=∠QAC-∠OAC=15°即∠QCO=∠QAO=15°.∴∠APC=∠AQC+∠QAO=45°.如图②,过点C作CD⊥AB于点D.∵△OAC是等边三角形,CD⊥AB于点D,∴∠DCO=30°,AD=AO=CO=2.∵∠APC=45°,∴∠DCQ=∠APC=45°∴PD=CD在Rt△DOC中,OC=4,∠DCO=30°,∴OD=2,∴CD=2∴PD=CD=2∴AP=AD+DP=2+2【点睛】此题主要考查圆的综合应用21、(1);(2)【解析】

(1)根据题意,画树状图列出三人随机选择上午或下午去游玩的所有等可能结果,找到小明和小刚都在本周日上午去游玩的结果,根据概率公式计算可得;(2)由(1)中树状图,找到三人在同一个半天去游玩的结果,根据概率公式计算可得.【详解】解:(1)根据题意,画树状图如图:由树状图可知,三人随机选择本周日的上午或下午去游玩共有8种等可能结果,其中小明和小刚都在本周日上午去游玩的结果有(上,上,上)、(上,上,下)2种,∴小明和小刚都在本周日上午去游玩的概率为=;(2)由(1)中树状图可知,他们三人在同一个半天去游玩的结果有(上,上,上)、(下,下,下)这2种,∴他们三人在同一个半天去游玩的概率为=.答:他们三人在同一个半天去游玩的概率是.【点睛】本题考查的是用列表法或树状图法求概率.注意列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.22、(1)(2)(3)【解析】试题分析:(1)结合图形可得矩形B的长可表示为:a+b,宽可表示为:a-b,继而可表示出周长;(2)根据题意表示出整个矩形的长和宽,再求周长即可;(3)先表示出整个矩形的面积,然后代入计算即可.试题解析:(1)矩形B的长可表示为:a+b,宽可表示为:a-b,∴每个B区矩形场地的周长为:2(a+b+a-b)=4a;(2)整个矩形的长为a+a+b=2a+b,宽为:a+a-b=2a-b,∴整个矩形的周长为:2(2a+b+2a-b)=8a;(3)矩形的面积为:S=(2a+b)(2a-b)=,把,代入得,S=4×202-102=4×400-100=1500.点睛:本题考查了列代数式的知识,属于基础题,解答本题的关键是结合图形表示出各矩形的长和宽.23、(1)见解析;(2)1【解析】

(1)根据ASA推出:△AEO≌△CFO;根据全等得出OE=OF,推出四边形是平行四边形,再根据EF⊥AC即可推出四边形是菱形;(2)根据线段垂直平分线性质得出AF=CF,设AF=x,推出AF=CF=x,BF=8-x.在Rt△ABF中,由勾股定理求出x的值,即可得到结论.【详解】(1)∵EF是AC的垂直平分线,∴AO=OC,∠AOE=∠COF=90°.∵四边形ABCD是矩形,∴AD∥BC,∴∠EAO=∠FCO.在△AEO和△CFO中,∵,∴△AEO≌△CFO(ASA);∴OE=OF.又∵OA=OC,∴四边形AECF是平行四边形.又∵EF⊥AC,∴平行四边形AECF是菱形;(2)设AF=x.∵EF是AC的垂直平分线,∴AF=CF=x,BF=8﹣x.在Rt△ABF中,由勾股定理得:AB2+BF2=AF2,∴42+(8﹣x)2=x2,解得:x=5,∴AF=5,∴菱形AECF的周长为1.【点睛】本题考查了勾股定理,矩形性质,平行四边形的判定,菱形的判定,全等三角形的性质和判定,平行线的性质等知识点的综合运用,用了方程思想.24、,当m=0时,原式=﹣1.【解析】

原式括号中两项通分,并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果.根据分数分母不为零的性质,不等于-1、2,将代入原式即可解出答案.【详解】解:原式,,,,∵且,∴当时,原式.【点睛】本题主要考查分数的性质、通分,四则运算法则以及倒数.25、OD=6.【解析】

(1)根据有两个角相等的三角形相似,直接列出比例式,求出OD的长,即可解决问题.【详解】在△AOB与△COD中,,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论