




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.有一组数据5,3,5,6,7,这组数据的众数为()A.3 B.6 C.5 D.72.如图,将△ABC沿BC边上的中线AD平移到△A'B'C'的位置,已知△ABC的面积为9,阴影部分三角形的面积为1.若AA'=1,则A'D等于()A.2 B.3 C. D.3.如图,点O是五边形ABCDE和五边形A1B1C1D1E1的位似中心,若OA:OA1=1:3,则五边形ABCDE和五边形A1B1C1D1E1的面积比是()A.1:2 B.1:3 C.1:4 D.1:94.下列图形中,既是轴对称图形又是中心对称图形的有()A.1个 B.2个 C.3个 D.4个5.关于x的方程有一个根是2,则另一个根等于()A.-4 B. C. D.6.若反比例函数y=的图象经过点(3,1),则它的图象也一定经过的点是()A.(﹣3,1) B.(3,﹣1) C.(1,﹣3) D.(﹣1,﹣3)7.若关于的一元二次方程有实数根,则的值不可能是()A. B. C.0 D.20188.如图1,在Rt△ABC中,∠B=90°,∠ACB=45°,延长BC到D,使CD=AC,则tan22.5°=()A. B. C. D.9.如图为二次函数y=ax2+bx+c的图象,在下列说法中:①ac<1;②方程ax2+bx+c=1的根是x1=﹣1,x2=3;③a+b+c<1;④当x>1时,y随x的增大而减小;⑤2a﹣b=1;⑥b2﹣4ac>1.下列结论一定成立的是()A.①②④⑥ B.①②③⑥ C.②③④⑤⑥ D.①②③④10.如图是某零件的模型,则它的左视图为()A. B. C. D.11.下列各数中,属于无理数的是()A. B. C. D.12.如图直线y=mx与双曲线y=交于点A、B,过A作AM⊥x轴于M点,连接BM,若S△AMB=2,则k的值是()A.1 B.2 C.3 D.4二、填空题(每题4分,共24分)13.如图,在直角三角形中,,是边上一点,以为边,在上方作等腰直角三角形,使得,连接.若,,则的最小值是_______.14.已知m是关于x的方程x2﹣2x﹣4=0的一个根,则2m2﹣4m=_____.15.如图,是一个半径为6cm,面积为12πcm2的扇形纸片,现需要一个半径为R的圆形纸片,使两张纸片刚好能组合成圆锥体,则R等于_____cm.16.设O为△ABC的内心,若∠A=48°,则∠BOC=____°.17.计算的结果是_____________.18.从1,2,3,4,5,6,7,8,9这九个自然数中,任取一个数是奇数的概率是.三、解答题(共78分)19.(8分)在边长为1个单位长度的正方形网格中,建立如图所示的平面直角坐标系,的顶点都在格点上,请解答下列问题:(1)作出向左平移4个单位长度后得到的,并写出点的坐标;(2)作出关于原点O对称的,并写出点的坐标;(3)已知关于直线L对称的的顶点的坐标为(-4,-2),请直接写出直线L的函数解析式.20.(8分)已知关于的一元二次方程.(1)若方程有实数根,求实数的取值范围;(2)若方程的两个实根为,且满足,求实数的值.21.(8分)如图,在平面直角坐标系xOy中,直线y=x﹣2与双曲线y=(k≠0)相交于A,B两点,且点A的横坐标是1.(1)求k的值;(2)过点P(0,n)作直线,使直线与x轴平行,直线与直线y=x﹣2交于点M,与双曲线y=(k≠0)交于点N,若点M在N右边,求n的取值范围.22.(10分)如图,已知中,,点是边上一点,且求证:;求证:.23.(10分)如图,四边形中,,平分,点是延长线上一点,且.(1)证明:;(2)若与相交于点,,求的长.24.(10分)某商场购进一批单价为4元的日用品.若按每件5元的价格销售,每月能卖出3万件;若按每件6元的价格销售,每月能卖出2万件,假定每月销售件数y(件)与价格x(元/件)之间满足一次函数关系.(1)试求y与x之间的函数关系式;(2)当销售价格定为多少时,才能使每月的利润最大?每月的最大利润是多少?25.(12分)某商场以每件20元购进一批衬衫,若以每件40元出售,则每天可售出60件,经调查发现,如果每件衬衫每涨价1元,商场平均每天可少售出2件,若设每件衬衫涨价元,回答下列问题:(1)该商场每天售出衬衫件(用含的代数式表示);(2)求的值为多少时,商场平均每天获利1050元?(3)该商场平均每天获利(填“能”或“不能”)达到1250元?26.如图,是半圆的直径,是半圆上的一点,切半圆于点,于为点,与半圆交于点.(1)求证:平分;(2)若,求圆的直径.
参考答案一、选择题(每题4分,共48分)1、C【分析】根据众数的概念求解.【详解】这组数据中1出现的次数最多,出现了2次,则众数为1.故选:C.【点睛】本题考查了众数的概念:一组数据中出现次数最多的数据叫做众数.2、A【解析】分析:由S△ABC=9、S△A′EF=1且AD为BC边的中线知S△A′DE=S△A′EF=2,S△ABD=S△ABC=,根据△DA′E∽△DAB知,据此求解可得.详解:如图,∵S△ABC=9、S△A′EF=1,且AD为BC边的中线,∴S△A′DE=S△A′EF=2,S△ABD=S△ABC=,∵将△ABC沿BC边上的中线AD平移得到△A'B'C',∴A′E∥AB,∴△DA′E∽△DAB,则,即,解得A′D=2或A′D=-(舍),故选A.点睛:本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的性质、相似三角形的判定与性质等知识点.3、D【分析】由点O是五边形ABCDE和五边形A1B1C1D1E1的位似中心,OA:OA1=1:3,可得位似比为1:3,根据相似图形的面积比等于相似比的平方,即可求得答案.【详解】∵点O是五边形ABCDE和五边形A1B1C1D1E1的位似中心,OA:OA1=1:3,∴五边形ABCDE和五边形A1B1C1D1E1的位似比为1:3,∴五边形ABCDE和五边形A1B1C1D1E1的面积比是1:1.故选:D.【点睛】此题考查了位似图形的性质.此题比较简单,注意相似图形的周长的比等于相似比,相似图形的面积比等于相似比的平方.4、B【解析】解:第一个图是轴对称图形,又是中心对称图形;第二个图是轴对称图形,不是中心对称图形;第三个图是轴对称图形,又是中心对称图形;第四个图是轴对称图形,不是中心对称图形;既是轴对称图形,又是中心对称图形的有2个.故选B.5、B【分析】利用根与系数的关系,,由一个根为2,以及a,c的值求出另一根即可.【详解】解:∵关于x的方程有一个根是2,∴,即∴,故选:B.【点睛】此题主要考查了根与系数的关系,熟练地运用根与系数的关系可以大大降低计算量.6、D【分析】由反比例函数y=的图象经过点(3,1),可求反比例函数解析式,把点代入解析式即可求解.【详解】∵反比例函数y=的图象经过点(3,1),∴y=,把点一一代入,发现只有(﹣1,﹣3)符合.故选D.【点睛】本题运用了待定系数法求反比例函数解析式的知识点,然后判断点是否在反比例函数的图象上.7、A【分析】由题意直接根据一元二次方程根的判别式,进行分析计算即可求出答案.【详解】解:由题意可知:△==4+4m≥0,∴m≥-1,的值不可能是-2.故选:A.【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的根的判别式进行分析求解.8、B【解析】设AB=x,求出BC=x,CD=AC=x,求出BD为(x+x),通过∠ACB=45°,CD=AC,可以知道∠D即为22.5°,再解直角三角形求出tanD即可.【详解】解:设AB=x,
∵在Rt△ABC中,∠B=90°,∠ACB=45°,
∴∠BAC=∠ACB=45°,
∴AB=BC=x,
由勾股定理得:AC==x,∴AC=CD=x∴BD=BC+CD=x+x,
∴tan22.5°=tanD==故选B.【点睛】本题考查了解直角三角形、勾股定理、等腰三角形的性质和判定等知识点,设出AB=x能求出BD=x+x是解此题的关键.9、B【解析】根据二次函数图象和性质可以判断各个小题中的结论是否成立,从而可以解答本题.根据图像分析,抛物线向上开口,a>1;抛物线与y轴交点在y轴的负半轴,c<1;坐标轴在右边,根据左同右异,可知b与a异号,b<1;与坐标轴有两个交点,那么△>1,根据这些信息再结合函数性质判断即可.【详解】解:①由图象可得,a>1,c<1,∴ac<1,故①正确,
②方程当y=1时,代入y=ax2+bx+c,求得根是x1=-1,x2=3,故②正确,
③当x=1时,y=a+b+c<1,故③正确,
④∵该抛物线的对称轴是直线x=∴当x>1时,y随x的增大而增大,故④错误,
⑤则2a=-b,那么2a+b=1,故⑤错误,
⑥∵抛物线与x轴两个交点,∴b2-4ac>1,故⑥正确,
故正确的为.①②③⑥选:B.【点睛】本题考查二次函数图象与系数的关系,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.10、D【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在视图中.【详解】从左面看去,是两个有公共边的矩形,如图所示:故选:D.【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.11、A【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,结合选项进行判断即可.【详解】A、是无理数,故本选项正确;
B、=2,是有理数,故本选项错误;
C、0,是有理数,故本选项错误;
D、1,是有理数,故本选项错误;
故选:A.【点睛】本题考查了无理数的定义,属于基础题,掌握无理数的三种形式是解答本题的关键.12、B【解析】此题可根据反比例函数图象的对称性得到A、B两点关于原点对称,再由S△ABM=1S△AOM并结合反比例函数系数k的几何意义得到k的值.【详解】根据双曲线的对称性可得:OA=OB,则S△ABM=1S△AOM=1,S△AOM=|k|=1,则k=±1.又由于反比例函数图象位于一三象限,k>0,所以k=1.故选B.【点睛】本题主要考查了反比例函数y=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点.二、填空题(每题4分,共24分)13、【分析】过点E作EH⊥直线AC于点H,利用AAS定理证明△BCD≌△DEH,设CD=x,利用勾股定理求,然后利用配方法求其最小值,从而使问题得解.【详解】解:过点E作EH⊥直线AC于点H,由题意可知:∠EDA+∠BDC=90°,∠BDC+∠DBC=90°∴∠EDA=∠DBC又∵∠C=∠EHD,BD=DE∴△BCD≌△DEH∴HD=BC=4设CD=x,则EH=xAH=∴在Rt△AEH中,当x=时,有最小值为∴AE的最小值为故答案为:【点睛】本题考查全等三角形的判定,勾股定理及二次函数求最值,综合性较强,正确添加辅助线是本题的解题关键.14、8【分析】根据方程的根的定义,将代入方程得,仔细观察可以发现,要求的代数式分解因式可变形为,将方程二次项与一次项整体代入即可解答.【详解】解:将代入方程可得,,.【点睛】本题考查了一元二次方程根的定义和代数求值,运用整体代入的数学思想可以方便解答。15、2.【解析】能组合成圆锥体,那么扇形的弧长等于圆形纸片的周长.应先利用扇形的面积=圆锥的弧长母线长,得到圆锥的弧长=2扇形的面积母线长,进而根据圆锥的底面半径=圆锥的弧长求解.【详解】圆锥的弧长,
圆锥的底面半径,
故答案为2.【点睛】解决本题的难点是得到圆锥的弧长与扇形面积之间的关系,注意利用圆锥的弧长等于底面周长这个知识点.16、1【详解】解:∵点O是△ABC的内切圆的圆心,故答案为1.17、1【分析】先分母有理化,然后把二次根式化为最简二次根式后合并即可.【详解】解:原式=2-2=1.故答案为1.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18、.【解析】试题分析:∵从1到9这九个自然数中一共有5个奇数,∴任取一个数是奇数的概率是:.故答案是.考点:概率公式.三、解答题(共78分)19、(1)图详见解析,C1(-1,2);(2)图详见解析,C2(-3,-2);(3)【分析】(1)利用网格特点和平移的性质写出点A、B、C的对应点A1、B1、C1的坐标,然后描点得到△A1B1C1;(2)根据关于原点中心对称的点的坐标特征写出点A2、B2、C2的坐标,然后描点即可;(3)根据对称的特点解答即可.【详解】(1)如图,为所作,C1(−1,2);(2)如图,为所作,C2(−3,−2);(3)因为A的坐标为(2,4),A3的坐标为(−4,−2),所以直线l的函数解析式为y=−x.【点睛】本题考查了作图−旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了轴对称变换和平移变换.20、(1);(2).【分析】(1)根据一元二次方程的根的判别式即可得;(2)先根据一元二次方程的根与系数的关系可得,从而可得求出,再代入方程即可得.【详解】(1)∵原方程有实数根,∴方程的根的判别式,解得;(2)由一元二次方程的根与系数的关系得:,又,,将代入原方程得:,解得.【点睛】本题考查了一元二次方程的根的判别式、以及根与系数的关系,较难的是题(2),熟练掌握根与系数的关系是解题关键.21、(1)k=1;(2)n>1或﹣1<n<2.【分析】(1)把点A的横坐标代入一次函数解析式求出纵坐标,确定出点A的坐标,代入反比例解析式求出k的值即可;
(2)根据题意画出直线,根据图象确定出点M在N右边时n的取值范围即可.【详解】解:(1)令x=1,代入y=x﹣2,则y=1,∴A(1,1),∵点A(1,1)在双曲线y=(k≠2)上,∴k=1;(2)联立得:,解得或,即B(﹣1,﹣1),如图所示:当点M在N右边时,n的取值范围是n>1或﹣1<n<2.【点睛】此题考查了一次函数与反比例函数的交点问题,利用了数形结合的思想,熟练掌握待定系数法是解本题的关键.22、(1)详见解析;(2)详见解析【分析】(1)根据相似三角形的性质和判定定理,即可得到结论;(2)由得,进而即可得到结论.【详解】(1),,,,即:,∴;,.∴,,即:∠DBE=90°,.【点睛】本题主要考查相似三角形的判定和性质定理以及直角三角形的性质定理,掌握两边对应成比例,夹角相等的两个三角形是相似三角形,是解题的关键.23、(1)详见解析;(2)【分析】(1)直接利用等腰三角形的性质结合互余的定义得出∠BDC=∠PDC;(2)首先过点C作CM⊥PD于点M,进而得出△CPM∽△APD,求出EC的长即可得出答案.【详解】解:(1):∵,平分,∴,∴,∵,∴,∴,∴;(2)过点作于点,∵,∴,∵,∴,∴,设,∵,∴,∵,∴,解得:,∴.【点睛】此题主要考查了相似三角形的判定与性质以及等腰三角形的性质等知识,正确得出△CPM∽△APD是解题关键.24、(1)(2)当销售价格定为6元时,每月的利润最大,每月的最大利润为40000元【解析】试题分析:(1)设y=kx+b,再由题目已知条件不难得出解析式;(2)设利润为W,将W用含x的式子表示出来,W为关于x的二次函数,要求最值,将解析式化为顶点式即可求出.试题解析:解:(1)设y=kx+b,根据题意得:,解得:k=-1,b=8,所以,y与x的函数关系式为y=-x+8;(2)设利润为W,则W=(x-4)(-x+8)=-(x-6)2+4,因为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 行政管理经济法复习时间安排指南试题及答案
- 房地产土石方运输协议
- 园林景观设计在市政中的应用试题及答案
- 城市广场设计与功能分析试题及答案
- 2024年太阳能热发电系统投资申请报告代可行性研究报告
- 提升复习效率市政试题及答案技巧
- 板栗钓鱼测试题及答案
- 会议室材料采购协议
- 深度复习中级经济师试题及答案
- 工程经济考试相关知识的重点试题及答案
- 2025年-重庆市建筑安全员B证考试题库附答案
- 结肠癌科普知识
- 2025-2031年中国核电用钛合金管道行业发展前景预测及投资方向研究报告
- 政府项目投资合作框架协议书范本
- 具身智能项目建设规划方案(参考模板)
- 科学小实验手摇发电机
- 三类人员安全教育
- 2024电能存储系统用锂蓄电池和电池组安全要求
- DB14-T 3225-2025 煤矸石生态回填环境保护技术规范
- 劳务外包服务投标方案(技术标)
- DB33T 1209-2020 无机轻集料保温板外墙保温系统应用技术规程
评论
0/150
提交评论