2023年黑龙江省绥化市普通高校对口单招高等数学一自考测试卷(含答案)_第1页
2023年黑龙江省绥化市普通高校对口单招高等数学一自考测试卷(含答案)_第2页
2023年黑龙江省绥化市普通高校对口单招高等数学一自考测试卷(含答案)_第3页
2023年黑龙江省绥化市普通高校对口单招高等数学一自考测试卷(含答案)_第4页
2023年黑龙江省绥化市普通高校对口单招高等数学一自考测试卷(含答案)_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年黑龙江省绥化市普通高校对口单招高等数学一自考测试卷(含答案)学校:________班级:________姓名:________考号:________

一、单选题(20题)1.

2.A.A.0B.1C.2D.任意值

3.

4.

5.设函数f(x)在区间(0,1)内可导,f'(x)>0,则在(0,1)内f(x)().A.单调增加B.单调减少C.为常量D.既非单调,也非常量

6.

7.曲线Y=x-3在点(1,1)处的切线的斜率为().

A.-1

B.-2

C.-3

D.-4

8.A.A.1

B.

C.

D.1n2

9.

A.仅有水平渐近线

B.既有水平渐近线,又有铅直渐近线

C.仅有铅直渐近线

D.既无水平渐近线,又无铅直渐近线

10.设f(x)=sin2x,则f(0)=()

A.-2B.-1C.0D.2

11.

12.函数f(x)在点x=x0处连续是f(x)在x0处可导的A.A.充分非必要条件B.必要非充分条件C.充分必要条件D.既非充分条件也非必要条件

13.下列()不是组织文化的特征。

A.超个体的独特性B.不稳定性C.融合继承性D.发展性

14.等于()。A.-1B.-1/2C.1/2D.1

15.

16.

17.

18.

19.设y=2-cosx,则y'=

A.1-sinxB.1+sinxC.-sinxD.sinx

20.函数f(x)=lnz在区间[1,2]上拉格朗日公式中的ε等于()。

A.ln2

B.ln1

C.lne

D.

二、填空题(20题)21.

22.

23.

24.

25.

26.设区域D:0≤x≤1,1≤y≤2,则

27.

28.

29.

30.31.32.

33.

34.

35.

36.

37.38.39.过坐标原点且与平面2x-y+z+1=0平行的平面方程为______.

40.

三、计算题(20题)41.求函数y=x-lnx的单调区间,并求该曲线在点(1,1)处的切线l的方程.42.证明:

43.已知某商品市场需求规律为Q=100e-0.25p,当p=10时,若价格上涨1%,需求量增(减)百分之几?

44.设平面薄板所占Oxy平面上的区域D为1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求该薄板的质量m.45.求函数一的单调区间、极值及其曲线的凹凸区间和拐点.46.求曲线在点(1,3)处的切线方程.47.设抛物线Y=1-x2与x轴的交点为A、B,在抛物线与x轴所围成的平面区域内,以线段AB为下底作内接等腰梯形ABCD(如图2—1所示).设梯形上底CD长为2x,面积为

S(x).

(1)写出S(x)的表达式;

(2)求S(x)的最大值.

48.49.当x一0时f(x)与sin2x是等价无穷小量,则

50.

51.研究级数的收敛性(即何时绝对收敛,何时条件收敛,何时发散,其中常数a>0.52.

53.

54.将f(x)=e-2X展开为x的幂级数.

55.求微分方程y"-4y'+4y=e-2x的通解.

56.求微分方程的通解.57.求函数f(x)=x3-3x+1的单调区间和极值.58.59.

60.四、解答题(10题)61.设y=ln(1+x2),求dy。62.证明:

63.

64.

65.(本题满分8分)

66.

67.

68.

69.

70.求y"-2y'=2x的通解.五、高等数学(0题)71.

六、解答题(0题)72.

参考答案

1.D

2.B

3.A

4.D解析:

5.A由于f(x)在(0,1)内有f'(x)>0,可知f(x)在(0,1)内单调增加,故应选A.

6.A解析:

7.C点(1,1)在曲线.由导数的几何意义可知,所求切线的斜率为-3,因此选C.

8.C本题考查的知识点为定积分运算.

因此选C.

9.A

10.D由f(c)=sin2x可得f"(x)=cos2x(2x)"=2cos2x,f"(0)=2cos0=2,故选D。

11.C解析:

12.B由可导与连续的关系:“可导必定连续,连续不一定可导”可知,应选B。

13.B解析:组织文化的特征:(1)超个体的独特性;(2)相对稳定性;(3)融合继承性;(4)发展性。

14.C本题考查的知识点为定积分的运算。

故应选C。

15.C

16.A

17.A解析:

18.D

19.D解析:y=2-cosx,则y'=2'-(cosx)'=sinx。因此选D。

20.D由拉格朗日定理

21.2xy(x+y)+3

22.

23.

解析:

24.3

25.26.本题考查的知识点为二重积分的计算。

如果利用二重积分的几何意义,可知的值等于区域D的面积.由于D是长、宽都为1的正形,可知其面积为1。因此

27.00解析:28.x—arctanx+C.

本题考查的知识点为不定积分的运算.

29.230.1

31.32.1

33.034.ln(1+x)+C本题考查的知识点为换元积分法.

35.ee解析:

36.

37.

本题考查的知识点为不定积分计算.

38.本题考查的知识点为两个:参数方程形式的函数求导和可变上限积分求导.

39.已知平面的法线向量n1=(2,-1,1),所求平面与已知平面平行,可设所求平面方程为2x-y+z+D=0,将x=0,y=0,z=0代入上式,可得D=0,因此所求平面方程为2x-y+z=0.

40.2

41.

42.

43.需求规律为Q=100ep-2.25p

∴当P=10时价格上涨1%需求量减少2.5%需求规律为Q=100ep-2.25p,

∴当P=10时,价格上涨1%需求量减少2.5%44.由二重积分物理意义知

45.

列表:

说明

46.曲线方程为,点(1,3)在曲线上.

因此所求曲线方程为或写为2x+y-5=0.

如果函数y=f(x)在点x0处的导数f′(x0)存在,则表明曲线y=f(x)在点

(x0,fx0))处存在切线,且切线的斜率为f′(x0).切线方程为

47.

48.49.由等价无穷小量的定义可知

50.

51.

52.

53.

54.

55.解:原方程对应的齐次方程为y"-4y'+4y=0,

56.57.函数的定义域为

注意

58.

59.由一阶线性微分方程通解公式有

60.

61.

62.

63.

64.

65.本题考查的知识点为求二元隐函数的偏导数.

解法1将所给方程两端关于x求偏导数,可得

将所给方程两端关于y求偏导数,可得

解法2

【解题指导】

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论