




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年福建省泉州市普通高校对口单招数学自考预测试题(含答案)学校:________班级:________姓名:________考号:________
一、单选题(20题)1.两个三角形全等是两个三角形面积相等的()A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件
2.函数和在同一直角坐标系内的图像可以是()A.
B.
C.
D.
3.已知向量a(3,-1),b(1,-2),则他们的夹角是()A.
B.
C.
D.
4.已知sin(5π/2+α)=1/5,那么cosα=()A.-2/5B.-1/5C.1/5D.2/5
5.的展开式中,常数项是()A.6B.-6C.4D.-4
6.以坐标轴为对称轴,离心率为,半长轴为3的椭圆方程是()A.
B.或
C.
D.或
7.已知平面向量a=(1,3),b(-1,1),则ab=A.(0,4)B.(-1,3)C.0D.2
8.将三名教师排列到两个班任教的安排方案数为()A.5B.6C.8D.9
9.已知x与y之间的一组数据:则y与x的线性回归方程为y=bx+a必过点()A.(2,2)B.(1,2)C.(1.5,0)D.(1.5,4)
10.一元二次不等式x2+x-6<0的解集为A.(-3,2)B.(2,3)C.(-∞,-3)∪(2,+∞)D.(-∞,2)∪(3,+∞)
11.圆(x+2)2+y2=4与圆(x-2)2+(y-1)2=9的位置关系为()A.内切B.相交C.外切D.相离
12.5人站成一排,甲、乙两人必须站两端的排法种数是()A.6B.12C.24D.120
13.设a,b为正实数,则“a>b>1”是“㏒2a>㏒2b>0的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条
14.设a>b,c>d则()A.ac>bdB.a+c>b+cC.a+d>b+cD.ad>be
15.贿圆x2/7+y2/3=1的焦距为()A.4
B.2
C.2
D.2
16.己知集合A={x|x>0},B={x|-2<x<1},则A∪B等于()A.{x|0<x<1}B.{x|x>0}C.{x|-2<x<1}D.{x|x>-2}
17.设A-B={x|x∈A且xB},若M={4,5,6,7,8},N={7,8,9,10}则M-N等于()A.{4,5,6,7,8,9,10}B.{7,8}C.{4,5,6,9,10}D.{4,5,6}
18.执行如图所示的程序,若输人的实数x=4,则输出结果为()A.4B.3C.2D.1/4
19.A.-1B.-4C.4D.2
20.函数在(-,3)上单调递增,则a的取值范围是()A.a≥6B.a≤6C.a>6D.-8
二、填空题(10题)21.若向量a=(2,-3)与向量b=(-2,m)共线,则m=
。
22.
23.秦九昭是我国南宋时期的数学家,他在所著的《数学九章》中提出的多项式求值的秦九昭算法,至今仍是比较先进的算法,如图所示的程序框图给出了利用秦九昭算法求某多项式值的一个实例,若输入n,x的值分别为3,4,则输出v的值为________.
24.若x<2,则_____.
25.已知α为第四象限角,若cosα=1/3,则cos(α+π/2)=_______.
26.
27.
28.某学校共有师生2400人,现用分层抽样的方法,从所有师生中抽取一个容量为160的样本,已知从学生中抽取的人数为150,那么该学校的教师人数是_______.
29.过点A(3,2)和点B(-4,5)的直线的斜率是_____.
30.若△ABC中,∠C=90°,,则=
。
三、计算题(5题)31.从含有2件次品的7件产品中,任取2件产品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2
.
32.求焦点x轴上,实半轴长为4,且离心率为3/2的双曲线方程.
33.有四个数,前三个数成等差数列,公差为10,后三个数成等比数列,公比为3,求这四个数.
34.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1)试估计“可回收垃圾”投放正确的概率;(2)试估计生活垃圾投放错误的概率。
35.已知函数f(x)的定义域为{x|x≠0},且满足.(1)求函数f(x)的解析式;(2)判断函数f(x)的奇偶性,并简单说明理由.
四、简答题(10题)36.已知cos=,,求cos的值.
37.计算
38.已知平行四边形ABCD中,A(-1,0),B(-1,-4),C(3,-2),E是AD的中点,求。
39.某中学试验班有同学50名,其中女生30人,男生20人,现在从中选取2人取参加校际活动,求(1)选出的2人都是女生的概率。(2)选出的2人是1男1女的概率。
40.已知集合求x,y的值
41.已知函数(1)求函数f(x)的最小正周期及最值(2)令判断函数g(x)的奇偶性,并说明理由
42.已知函数,且.(1)求a的值;(2)求f(x)函数的定义域及值域.
43.设拋物线y2=4x与直线y=2x+b相交A,B于两点,弦AB长,求b的值
44.以点(0,3)为顶点,以y轴为对称轴的拋物线的准线与双曲线3x2-y2+12=0的一条准线重合,求抛物线的方程。
45.已知函数:,求x的取值范围。
五、证明题(10题)46.己知sin(θ+α)=sin(θ+β),求证:
47.△ABC的三边分别为a,b,c,为且,求证∠C=
48.己知x∈(1,10),A=lg2x,B=lgx2,证明:A<B.
49.如图所示,四棱锥中P-ABCD,底面ABCD为矩形,点E为PB的中点.求证:PD//平面ACE.
50.己知正方体ABCD-A1B1C1D1,证明:直线AC1与直线A1D1所成角的余弦值为.
51.
52.己知直线l:x+y+4=0且圆心为(1,-1)的圆C与直线l相切。证明:圆C的标准方程为(x-1)2
+(y+1)2
=8.
53.长、宽、高分别为3,4,5的长方体,沿相邻面对角线截取一个三棱锥(如图).求证:剩下几何体的体积为三棱锥体积的5倍.
54.己知
a
=(-1,2),b
=(-2,1),证明:cos〈a,b〉=4/5.
55.若x∈(0,1),求证:log3X3<log3X<X3.
六、综合题(2题)56.
(1)求该直线l的方程;(2)求圆心该直线上且与两坐标轴相切的圆的标准方程.
57.己知点A(0,2),5(-2,-2).(1)求过A,B两点的直线l的方程;(2)己知点A在椭圆C:上,且(1)中的直线l过椭圆C的左焦点。求椭圆C的标准方程.
参考答案
1.A两个三角形全等则面积相等,但是两个三角形面积相等不能得到二者全等,所以是充分不必要条件。
2.D
3.B因为,所以,,因此,由于两向量夹角范围为[0,π],所以夹角为π/4。
4.C同角三角函数的计算sin(5π/2+α)=sin(π/2+α)=cosα=-1/5.
5.A
6.B由题意可知,焦点在x轴或y轴上,所以标准方程有两个,而a=3,c/a=1/3,所以c=1,b2=8,因此答案为B。
7.D
8.B
9.D线性回归方程的计算.由于
10.A
11.B圆与圆的位置关系,两圆相交
12.B
13.A充要条件.若a>b>1,那么㏒2a>㏒2b>0;若㏒2a>㏒26>0,那么a>b>l
14.B不等式的性质。由不等式性质得B正确.
15.A椭圆的定义.因为a2=7,b2=3,所以c2-a2-b2=4,c=2,2c=4.
16.D
17.D
18.C三角函数的运算∵x=4>1,∴y=㏒24=2
19.C
20.A
21.3由于两向量共线,所以2m-(-2)(-3)=0,得m=3.
22.外心
23.100程序框图的运算.初始值n=3,x=4,程序运行过程如下表所示:v=1,i=2,v=1×4+2=6,i=1,v=6×4+l=25,i=0,v=25×4+0=100,i=-1跳出循环,输出v的值为100.
24.-1,
25.
利用诱导公式计算三角函数值.∵α为第四象限角,∴sinα-
26.{x|0<x<3}
27.√2
28.150.分层抽样方法.该校教师人数为2400×(160-150)/160=150(人).
29.
30.0-16
31.
32.解:实半轴长为4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20双曲线方程为
33.
34.
35.
36.
37.
38.平行四边形ABCD,CD为AB平移所得,从B点开始平移,于是C平移了(4,2),所以,D(-1+4,0+2)=(3,2),E是AD中点,E[(-1+3)/2,(0+2)/2]=(1,1)向量EC=(3-1,-2-1)=(2,-3),向量ED=(3-1,2-1)=(2,1)向量EC×向量ED=2×2+(-3)×1=1。
39.(1)2人都是女生的概率P=C(2,30)/C(2,50)=30*29/(50*49)=0.35510
(2)2人都是男生的概率P=C(2,20)/C(2,50)=20*19/(50*49)=0.15510
选出的一男一女的概率P=C(1,20)*C(1,30)/C(2,50)=20*30/((50*49)/2)=0.4897
40.
41.(1)(2)∴又∴函数是偶函数
42.(1)(2)
43.由已知得整理得(2x+m)2=4x即∴再根据两点间距离公式得
44.由题意可设所求抛物线的方程为准线方程为则y=-3代入得:p=12所求抛物线方程为x2=24(y-3)
45.
X>4
46.
47.
48.证明:考虑对数函数y=lgx的限制知
:当x∈(1,10)时,y∈(0,1)A-B=lg2
x-lgx2
=lgx·lgx-2lgx=lgx(lgx-2)∵lgx∈(0,1)∴lgx-2<0A-B<0∴A<B
49.
∴PD//平面ACE.
50.
51.
52.
53.证明:根据该几何体的特征,可知所剩的几何体的体积为长方体的体积减去所截的三棱锥的体积,即
54.
55.
56.解:(1)斜率k=5/3,设直线l的方程5x-3y+m=0,直线l经过点(0,-8/3),所以m=8,直线l的方程为5x-3y-8=0。(2)设圆心为C(a,b),圆与两坐标轴相切,故a=±b又圆心在直线5x-3y-8=0上,将a=b或a=-b代入直线方程得:a=4或a=1当a=4时,b
=4,此时r=4,圆的方程为(x-4)2
+(y-4)2=16当
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 郑州丹尼斯大卫城营销策略优化研究
- 2025年4月继电保护题库+参考答案
- 重难点解析人教版八年级物理上册第5章透镜及其应用-透镜同步练习练习题(解析版)
- 2025年道路运输企业主要负责人和安全生产管理人员考试(主要负责人)仿真试题及答案
- 考点解析人教版八年级上册物理光现象《光的反射》专题测评练习题(详解)
- 2025年铣工(数控铣床操作)职业技能鉴定试卷及答案
- 2025年房地产开发试卷及答案
- 安装红绿灯监控工程方案(3篇)
- 测量服务进度保障措施方案
- 2025建筑结构考试试卷及答案
- 心衰患者的容量管理中国专家共识-共识解读
- 家长会课件:初一第一次家长会
- H3C全系列产品visio图标库
- 天然气长输管线监理规划
- 教科版三年级上册《空气》单元作业设计
- 中国风中医药文化PPT模板
- ArchiBIM三维协同设计及BIM技术路线
- 2023年中职单招医药卫生类技能考试参考题库(附答案)
- 药学毕业论文5000字药学论文的5000字(合集十二篇)
- 控压钻井专业技术及节流阀专题
- 2022年遵义市医疗系统事业编制乡村医生招聘笔试试题及答案解析
评论
0/150
提交评论