版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年内蒙古自治区巴彦淖尔市普通高校对口单招数学自考预测试题(含答案)学校:________班级:________姓名:________考号:________
一、单选题(10题)1.已知等差数列的前n项和是,若,则等于()A.
B.
C.
D.
2.A.B.C.D.
3.函数和在同一直角坐标系内的图像可以是()A.
B.
C.
D.
4.设a,b为正实数,则“a>b>1”是“㏒2a>㏒2b>0的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条
5.在ABC中,C=45°,则(1-tanA)(1-tanB)=()A.1B.-1C.2D.-2
6.椭圆9x2+16y2=144短轴长等于()A.3B.4C.6D.8
7.圆心为(1,1)且过原点的圆的方程是()A.(x-l)2+(y-1)2=1
B.(x+1)2+(y+1)2=1
C.(x+1)2+(y+1)2=2
D.(x-1)2+(y-1)2=2
8.已知向量a=(1,k),b=(2,2),且a+b与a共线,那么a×b的值为()A.1B.2C.3D.4
9.直线l:x-2y+2=0过椭圆的左焦点F1和上顶点B,该椭圆的离心率为()A.1/5
B.2/5
C.
D.
10.l1,l2,l3是空间三条不同的直线,则下列命题正确的是()A.l1丄l2,l2丄l3,l1//l3
B.l1丄l2,l2//l3,l1丄l3
C.l1//l2//l3,l1,l2,l3共面
D.l1,l2,l3共点l1,l2,l3共面
二、填空题(10题)11.函数f(x)=sin2x-cos2x的最小正周期是_____.
12.如图所示,某人向圆内投镖,如果他每次都投入圆内,那么他投中正方形区域的概率为____。
13.某学校共有师生2400人,现用分层抽样的方法,从所有师生中抽取一个容量为160的样本,已知从学生中抽取的人数为150,那么该学校的教师人数是_______.
14.以点(1,0)为圆心,4为半径的圆的方程为_____.
15.等比数列中,a2=3,a6=6,则a4=_____.
16.若=_____.
17.5个人站在一其照相,甲、乙两人间恰好有一个人的排法有_____种.
18.
19.Ig0.01+log216=______.
20.已知α为第四象限角,若cosα=1/3,则cos(α+π/2)=_______.
三、计算题(5题)21.设函数f(x)既是R上的减函数,也是R上的奇函数,且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范围.
22.有四个数,前三个数成等差数列,公差为10,后三个数成等比数列,公比为3,求这四个数.
23.己知{an}为等差数列,其前n项和为Sn,若a3=6,S3=12,求公差d.
24.己知直线l与直线y=2x+5平行,且直线l过点(3,2).(1)求直线l的方程;(2)求直线l在y轴上的截距.
25.已知函数y=cos2x+3sin2x,x∈R求:(1)函数的值域;(2)函数的最小正周期。
四、简答题(10题)26.在三棱锥P-ABC中,已知PA丄BC,PA=a,EC=b,PA,BC的公垂线EF=h,求三棱锥的体积
27.已知向量a=(1,2),b=(x,1),μ=a+2b,v=2a-b且μ//v;求实数x。
28.拋物线的顶点在原点,焦点为椭圆的左焦点,过点M(-1,-1)引抛物线的弦使M为弦的中点,求弦长
29.平行四边形ABCD中,CBD沿对角线BD折起到平面CBD丄平面ABD,求证:AB丄DE。
30.已知等差数列的前n项和是求:(1)通项公式(2)a1+a3+a5+…+a25的值
31.已知双曲线C:的右焦点为,且点到C的一条渐近线的距离为.(1)求双曲线C的标准方程;(2)设P为双曲线C上一点,若|PF1|=,求点P到C的左焦点的距离.
32.某篮球运动员进行投篮测验,每次投中的概率是0.9,假设每次投篮之间没有影响(1)求该运动员投篮三次都投中的概率(2)求该运动员投篮三次至少一次投中的概率
33.证明上是增函数
34.化简
35.已知等差数列{an},a2=9,a5=21(1)求{an}的通项公式;(2)令bn=2n求数列{bn}的前n项和Sn.
五、解答题(10题)36.已知a为实数,函数f(x)=(x2+l)(x+a).若f(-1)=0,求函数:y=f(x)在[-3/2,1]上的最大值和最小值。
37.
38.如图,AB是⊙O的直径,P是⊙O所在平面外一点,PA垂直于⊙O所在的平面,且PA=AB=10,设点C为⊙O上异于A,B的任意一点.(1)求证:BC⊥平面PAC;(2)若AC=6,求三棱锥C-PAB的体积.
39.
40.
41.给定椭圆C:x2/a2+y2/b2(a>b>0),称圆C1:x2+y2=a2+b2为椭圆C的“伴随圆已知椭圆C的离心率为/2,且经过点(0,1).(1)求椭圆C的方程;(2)求直线l:x—y+3=0被椭圆C的伴随圆C1所截得的弦长.
42.已知函数f(x)=log21+x/1-x.(1)求f(x)的定义域;(2)讨论f(x)的奇偶性;(3)用定义讨论f(x)的单调性.
43.如图,在四棱锥P-ABCD中,底面是正方形,PD⊥平面ABCD,且PD=AD.(1)求证:PA⊥CD;(2)求异面直线PA与BC所成角的大小.
44.成等差数列的三个正数的和等于15,并且这三个数分别加上2,5,13后成为等比数列{bn}中的b3,b4,b5(1)求数列{bn}的通项公式;(2)数列{bn}的前n项和为Sn,求证:数列{Sn+5/4}是等比数列
45.甲、乙两人进行投篮训练,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且两人投球命中与否相互之间没有影响.(1)若两人各投球1次,求恰有1人命中的概率;(2)若两人各投球2次,求这4次投球中至少有1次命中的概率.
六、单选题(0题)46.A.1B.8C.27
参考答案
1.D设t=2n-1,则St=t(t+1+1)=t(t+2),故Sn=n(n+2)。
2.B
3.D
4.A充要条件.若a>b>1,那么㏒2a>㏒2b>0;若㏒2a>㏒26>0,那么a>b>l
5.C
6.C
7.D圆的标准方程.圆的半径r
8.D平面向量的线性运算∵向量a=(1,k),b=(2,2),∴a+b=(3,k+2),又a+b与a共线.∴(k+2)-3k=0,解得k=1,∴A×b=(1,1).(2,2)=1×2+1×2=4,
9.D直线与椭圆的性质,离心率公式.直线l:x-2y+2=0与x轴的交点F1(-2,0),与y轴的交点B(0,1),由于椭圆的左焦点为F1,上顶点为B,则c=2,b=1,∴a=
10.B判断直线与直线,直线与平面的位置关系.A项还有异面或者相交,C、D不一定.
11.πf(x)=2(1/2sin2x-1/2cos2x)=2sin(2x-π/4),因此最小正周期为π。
12.2/π。
13.150.分层抽样方法.该校教师人数为2400×(160-150)/160=150(人).
14.(x-1)2+y2=16圆的方程.当圆心坐标为(x0,y0)时,圆的-般方程为(x-x0)+(y-y0)=r2.所以,(x-1)2+y2=16
15.
,由等比数列性质可得a2/a4=a4/a6,a42=a2a6=18,所以a4=.
16.
,
17.36,
18.7
19.2对数的运算.lg0.01+lg216=lg1/100+㏒224=-2+4=2.
20.
利用诱导公式计算三角函数值.∵α为第四象限角,∴sinα-
21.解:(1)因为f(x)=在R上是奇函数所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因为f(x)=在R上是减函数,t2-3t+1<-1所以1<t<2
22.
23.
24.解:(1)设所求直线l的方程为:2x-y+c=0∵直线l过点(3,2)∴6-2+c=0即c=-4∴所求直线l的方程为:2x-y-4=0(2)∵当x=0时,y=-4∴直线l在y轴上的截距为-4
25.
26.
27.
∵μ//v∴(2x+1.4)=(2-x,3)得
28.
29.
30.
31.(1)∵双曲线C的右焦点为F1(2,0),∴c=2又点F1到C1的一条渐近线的距离为,∴,即以解得b=
32.(1)P=0.9×0.9×0.9=0.729(2)P=1-0.1×0.1×0.1=0.999
33.证明:任取且x1<x2∴即∴在是增函数
34.1+2cos2a-cos2=1+2cos2a-(cos2a-sin2a)=1+cos2a+sin2a=2
35.(1)∵a5=a2+3dd=4a2=a1+d∴an=a1+(n-1)d=5+4n-4=4n+1(2)
∴数列为首项b1=32,q=16的等比数列
36.
37.
38.(1)∵PA垂直于⊙O所在的平面,BC包含于⊙O所在的平面,∴PA⊥BC,又∵AB为⊙O的直径,C为⊙O上异于A、B的-点,AC⊥BC,且PA∩AC=A,∴BC⊥平面PAC.(2)由(1)知△ABC为直角三角形且∠ACB=90°,又AC=6,AB=10,∴又∵PA=10,PA⊥AC,∴S△PAC=1/2PA.AC=1/2×10×6=30.∴VC-PAB=1/3×SPAC×BC=1/3×30×8=80
39.
40.
41.
42.(1)要使函数f(x)=㏒21+x/1-x有意义,则须1+x/1-x>0解得-1<x<1,所以f(x)的定义域为{x|-1<x<1}.(2)因为f(x)的定义域为{x|-1<x<1},且f(-x)=㏒2(1+x/1-x)-1=-㏒21+x/1-x=-f(x).所以f(x)是定义在(-1,1)上的奇函数.(3)设-1<x1<x2<1,则f(x1)-f(x2)=log1+x1/1+x2=㏒(1+x1)(1-x2)f(1-x1)(1+x2)∵-1<x1<x2<1
43.(1)如图,已知底面ABCD是正方形,∴CD⊥AD.∵PD⊥平面ABCD,又CD包含于平面ABCD,∴PD⊥CD.∵PD∩AD=D,∴CD⊥平面PAD,又PA包含于平面PAD,∴PA⊥CD.(2)解∵BC//AD,∴∠PAD即为异面直线PA与BC所成的角.由(1)知,PD⊥AD,在Rt△PAD中,PD=AD,故∠PAD=45°即为所求.
44.(1)设成
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 企业安全保卫与应急管理指南(标准版)
- 2025年智能家居产品售后服务规范
- 法律合规与风险控制制度
- 2025年医疗器械使用与维护规范
- 超市员工绩效考核及评价制度
- 超市库存管理及盘点制度
- 2026年西岸华府幼儿园短期教师招聘备考题库及完整答案详解1套
- 养老院老人健康饮食营养师激励制度
- 2026年青岛中远海运物流供应链有限公司招聘备考题库完整答案详解
- 2026年舟山市普朱管委会党政办公室招聘备考题库及完整答案详解1套
- 器官移植术后排斥反应的风险分层管理
- 虚拟电厂关键技术
- 事业单位清算及财务报告编写范本
- 护坡绿化劳务合同范本
- 临床绩效的DRG与CMI双指标调控
- 2026年湛江日报社公开招聘事业编制工作人员备考题库及完整答案详解
- 2025-2026学年人教版数学三年级上学期期末仿真模拟试卷一(含答案)
- 2025年凉山教师业务素质测试题及答案
- 2026年昭通市威信县公安局第一季度辅警招聘(14人)笔试模拟试题及答案解析
- 氢能技术研发协议
- 2025交管12123学法减分整套试题带答案解析(全国适用)
评论
0/150
提交评论