2022-2023学年江西省吉安市普通高校对口单招数学自考预测试题(含答案)_第1页
2022-2023学年江西省吉安市普通高校对口单招数学自考预测试题(含答案)_第2页
2022-2023学年江西省吉安市普通高校对口单招数学自考预测试题(含答案)_第3页
2022-2023学年江西省吉安市普通高校对口单招数学自考预测试题(含答案)_第4页
2022-2023学年江西省吉安市普通高校对口单招数学自考预测试题(含答案)_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年江西省吉安市普通高校对口单招数学自考预测试题(含答案)学校:________班级:________姓名:________考号:________

一、单选题(10题)1.在△ABC中,“x2

=1”是“x=1”的()

A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件

2.已知A是锐角,则2A是A.第一象限角B.第二象限角C.第一或第二象限角D.D小于180°的正角

3.“a=0”是“a2+b2=0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件

4.从1,2,3,4,5这5个数中,任取四个上数组成没有重复数字的四个数,其中5的倍数的概率是()A.

B.

C.

D.

5.若输入-5,按图中所示程序框图运行后,输出的结果是()A.-5B.0C.-1D.1

6.设函数f(x)=x2+1,则f(x)是()

A.奇函数B.偶函数C.非奇非偶函数D.既是奇函数又是偶函数

7.下列双曲线中,渐近线方程为y=±2x的是()A.x2-y2/4=1

B.x2/4-y2=1

C.x2-y2/2=1

D.x2/2-y2=1

8.已知的值()A.

B.

C.

D.

9.随着互联网的普及,网上购物已经逐渐成为消费时尚,为了解消费者对网上购物的满意情况,某公司随机对4500名网上购物消费者进行了调查(每名消费者限选一种情况回答),统计结果如表:根据表中数据,估计在网上购物的消费者群体中对网上购物“比较满意”或“满意”的概率是()A.7/15B.2/5C.11/15D.13/15

10.某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为()A.1

B.

C.

D.2

二、填空题(10题)11.不等式|x-3|<1的解集是

12.集合A={1,2,3}的子集的个数是

13.椭圆9x2+16y2=144的短轴长等于

14.已知函数,若f(x)=2,则x=_____.

15.

16.则a·b夹角为_____.

17.(x+2)6的展开式中x3的系数为

18.若lgx>3,则x的取值范围为____.

19.

20.若ABC的内角A满足sin2A=则sinA+cosA=_____.

三、计算题(5题)21.(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性,并说明理由。

22.己知直线l与直线y=2x+5平行,且直线l过点(3,2).(1)求直线l的方程;(2)求直线l在y轴上的截距.

23.在等差数列{an}中,前n项和为Sn

,且S4

=-62,S6=-75,求等差数列{an}的通项公式an.

24.甲、乙两人进行投篮训练,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且两人投球命中与否相互之间没有影响.(1)若两人各投球1次,求恰有1人命中的概率;(2)若两人各投球2次,求这4次投球中至少有1次命中的概率.

25.某小组有6名男生与4名女生,任选3个人去参观某展览,求(1)3个人都是男生的概率;(2)至少有两个男生的概率.

四、简答题(10题)26.化简

27.据调查,某类产品一个月被投诉的次数为0,1,2的概率分别是0.4,0.5,0.1,求该产品一个月内被投诉不超过1次的概率

28.证明上是增函数

29.求过点P(2,3)且被两条直线:3x+4y-7=0,:3x+4y+8=0所截得的线段长为的直线方程。

30.若α,β是二次方程的两个实根,求当m取什么值时,取最小值,并求出此最小值

31.求k为何值时,二次函数的图像与x轴(1)有2个不同的交点(2)只有1个交点(3)没有交点

32.已知A,B分别是椭圆的左右两个焦点,o为坐标的原点,点P(-1,)在椭圆上,线段PB与y轴的焦点M为线段PB的中心点,求椭圆的标准方程

33.求经过点P(2,-3)且横纵截距相等的直线方程

34.已知等差数列{an},a2=9,a5=21(1)求{an}的通项公式;(2)令bn=2n求数列{bn}的前n项和Sn.

35.已知平行四边形ABCD中,A(-1,0),B(-1,-4),C(3,-2),E是AD的中点,求。

五、解答题(10题)36.已知{an}为等差数列,且a3=-6,a6=0.(1)求{an}的通项公式;(2)若等比数列{bn}满足b1=-8,b2=a1+a2+a3,求{bn}的前n项和公式.

37.

38.已知椭圆C的对称中心为原点O,焦点在x轴上,左右焦点分别为F1和F2,且|F1F2|=2,点(1,3/2)在该椭圆上.(1)求椭圆C的方程;(2)过F1的直线L与椭圆C相交于A,B两点,以F2为圆心为半径的圆与直线L相切,求△AF2B的面积.

39.已知函数(1)f(π/6)的值;(2)求函数f(x)的最小正周期和单调递增区间.

40.

41.如图,在正方体ABCD-A1B1C1D1中,E,F分别为DD1,CC1的中点.求证:(1)AC⊥BD1;(2)AE//平面BFD1.

42.

43.为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是().A.简单随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样

44.如图,在四棱锥P—ABCD中,平面PAD丄平面ABCD,AB=AD,∠BAD=60°,E,F分别是AP,AD的中点.连接BD求证:(1)直线EF//平面PCD;(2)平面BEF丄平面PAD.

45.设椭圆x2/a2+y2/b2的方程为点O为坐标原点,点A的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足|BM|=2|MA|直线OM的斜率为.(1)求E的离心率e(2)设点C的坐标为(0,-b),N为线段AC的中点,证明:MN丄AB

六、单选题(0题)46.设一直线过点(2,3)且它在坐标轴上的截距和为10,则直线方程为()A.

B.

C.

D.

参考答案

1.Bx2=1不能得到x=1,但是反之成立,所以是必要不充分条件。

2.D

3.B命题的判定.若a2+b2=0,则a=b=0;若a=0,则a2+b2不一定等于0.

4.A

5.D程序框图的运算.因x=-5,不满足>0,所以在第一个判断框中

6.B由题可知,f(x)=f(-x),所以函数是偶函数。

7.A双曲线的渐近线方程.由双曲线渐近线方程的求法知,双曲线x2-y2/4=1的渐近线方程为y=±2x

8.A

9.C古典概型的概率公式.由题意,n=4500-200-2100-1000=1200.所以对网上购物“比较满意”或“满意”的人数为1200+2100=3300,由古典概型概率公式可得对网上购物“比较满意”或“满意”的概率为3300/4500=11/15.

10.C四棱锥的直观图.四棱锥的直观图如图所示,PC⊥平面ABCD,PC=1,底面四边形ABCD为正方形且边长为1,最长棱长

11.

12.8

13.

14.

15.(1,2)

16.45°,

17.160

18.x>1000对数有意义的条件

19.10函数值的计算.由=3,解得a=10.

20.

21.

22.解:(1)设所求直线l的方程为:2x-y+c=0∵直线l过点(3,2)∴6-2+c=0即c=-4∴所求直线l的方程为:2x-y-4=0(2)∵当x=0时,y=-4∴直线l在y轴上的截距为-4

23.解:设首项为a1、公差为d,依题意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23

24.

25.

26.1+2cos2a-cos2=1+2cos2a-(cos2a-sin2a)=1+cos2a+sin2a=2

27.设事件A表示“一个月内被投诉的次数为0”,事件B表示“一个月内被投诉的次数为1”∴P(A+B)=P(A)+P(B)=0.4+0.5=0.9

28.证明:任取且x1<x2∴即∴在是增函数

29.x-7y+19=0或7x+y-17=0

30.

31.∵△(1)当△>0时,又两个不同交点(2)当A=0时,只有一个交点(3)当△<0时,没有交点

32.点M是线段PB的中点又∵OM丄AB,∴PA丄AB则c=1+=1,a2=b2+c2解得,a2=2,b2=1,c2=1因此椭圆的标准方程为

33.设所求直线方程为y=kx+b由题意可知-3=2k+b,b=解得,时,b=0或k=-1时,b=-1∴所求直线为

34.(1)∵a5=a2+3dd=4a2=a1+d∴an=a1+(n-1)d=5+4n-4=4n+1(2)

∴数列为首项b1=32,q=16的等比数列

35.平行四边形ABCD,CD为AB平移所得,从B点开始平移,于是C平移了(4,2),所以,D(-1+4,0+2)=(3,2),E是AD中点,E[(-1+3)/2,(0+2)/2]=(1,1)向量EC=(3-1,-2-1)=(2,-3),向量ED=(3-1,2-1)=(2,1)向量EC×向量ED=2×2+(-3)×1=1。

36.(1)设等差数列{an}的公差为d因为a3=-6,a5=0,所以解得a1=-10,d=2所以an=-10+(n-1)×2=2n-12.(2)设等比数列{bn}的公比为q.因为b2=a1+a2+a3=-24,b1=-8,所以-8q=-24,q=3.所以数列{bn}的前n项和公式为Sn=b1(1-qn)/1-q=4(1-3n)

37.

38.

以F2为圆心为半径的圆的方程为(x-l)22+y2=2①当直线l⊥x轴时,与圆不相切,不符合题意.②当直线l与x不垂直时,设直线的方程为y=k(x+1),由圆心到直线的距离等

39.

40.

41.(1)连接BD,由D1D⊥平面ABCD→D1D⊥AC又BD⊥AC,BD∩D1D=D,BD1,BD平面BDD1→AC⊥平面BDD1,又因为BD1包含于平面BDD1→AC⊥BD1.(2)连接EF,因为E,F分别为DD1,CC1的中点,所以EF//DC,且EF=DC,又DC//AB,且EF=AB所以四边形EFBA是平行四边形,所以AE//BF,又因为AE不包含平面BFD1,BF包含于平面BFD1,所以AE//平面BFD1

42.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论