




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年内蒙古自治区巴彦淖尔市成考高升专数学(文)自考预测试题(含答案)学校:________班级:________姓名:________考号:________
一、单选题(30题)1.函数y=x3+3x2-1()
A.没有极大值B.没有极小值C.极大值为-1D.极小值为-1
2.下列函数在其定义域内单调递增的是()
3.一箱子中有5个相同的球,分别标以号码l,2,3,4,5.从中一次任取2个球,则这2个球的号码都大于2的概率为()
4.设二次函数y=ax2+bx+c的图像过点(-1,2)和(3,2),则其对称轴的方程为()A.x=-1B.x=3C.x=2D.x=1
5.
6.下列函数中,既是偶函数,又在区间(0,3)上为减函数的是()
7.已知,则=()
A.-3
B.
C.3
D.
8.
9.
10.某同学每次投篮投中的概率为2/5,该同学投篮2次,只投中1次的概率为A.12/25B.9/25C.6/25D.3/5
11.等差数列{an}的公差d<0,且a2·a4=12,a2+a4=8,则数列{an}的通项公式是()A.A.an=2n-2B.an=2n+4C.an=-2n+12D.an=-2n+10
12.
13.
14.已知数列前n项和,则第5项的值是()A.7B.10C.13D.16
15.已知函数f(x)=x2+2x+2(x<-1),则f-1(2)的值为()
A.-2B.10C.0D.2
16.双曲线的焦点坐标是()
A.
B.
C.(0,-5),(0,5)
D.(-5,0),(5,0)
17.设向量则∣a-b∣=()A.1B.3C.4D.5
18.
19.甲、乙两人射击的命中率都是0.6,他们对着目标各自射击一次,恰有一人击中目标的概率是()A.0.36B.0.48C.0.84D.120.
21.一书架上放有5本科技书,7本文艺书,一学生从中任取一本科技书的概率是
A.5/7B.5/12C.7/12D.1/522.A.A.12B.6C.3D.1
23.
24.不等式x^2-5x-6≤0的解集是()
A.{x∣-2≤x≤3}B.{x∣-1≤x≤6}C.{x∣-6≤x≤1}D.{x∣x≤-1或x≥6}
25.
26.
27.设lg2=a,则lg225等于()A.A.
B.
C.
D.
28.
29.
30.
二、填空题(20题)31.曲线y=x3—2x在点(1,-1)处的切线方程为.
32.不等式|x-1|<1的解集为
33.
34.
35.
36.
37.
38.在△ABC中,AB=3,BC=5,AC=7,则cosB=_____.
39.
40.函数y=2cosx-cos2x的最大值是__________.
41.
42.从5位男生和4位女生中选出2人作代表,恰好一男生和一女生的概率是______.43.
44.从5位男生和4位女生中选出2人作代表,恰好一男生和一女生的概率是_____.
45.
46.
47.若5条鱼的平均质量为0.8kg,其中3条鱼的质量分别为0.75kg,0.83kg和0.78kg,则其余2条鱼的平均质量为()kg.48.曲线y=x2-ex+1在点(0,0)处的切线方程为___________________。49.函数的定义域是________.
50.若二次函数y=f(x)的图像过点(0,o),(-1,1)和(-2,o),则f(x)=__________.
三、计算题(2题)51.
52.
四、解答题(10题)53.设椭圆的中心是坐标原点,长轴在x轴上,离心率
,已知点P(0,3/2)到椭圆上的点的最远距离是,求椭圆的方程。54.
(I)求椭圆的方程;
55.
56.
57.
58.
59.设函数f(x)=x3-3x2-9x.求
(I)函数f(x)的导数;
(1I)函数f(x)在区间[1,4]的最大值与最小值.
60.61.(本小题满分12分)已知函数f(x)=x3+x2-5x-1。求:(1)f(x)的单调区间;(2)f(x)零点的个数。
62.设等比数列{an
}的各项都是正数,其前n项和Sn=3an-1,求数列{an
}的公比q和首项a1.
五、单选题(2题)63.在等差数列{an}中,a1=1,公差d≠0,a2,a3,a6成等比数列,则d=()。A.1B.-1C.-2D.2
64.
六、单选题(1题)65.y=cos24x的最小正周期是()A.
B.
C.2π
D.π
参考答案
1.D
2.C
3.D本题主要考查的知识点为随机事件的概率.应试指导】任取2球,其号码均大于2的概率一
4.D【考点点拨】该小题主要考查的知识点为二次函数的对称轴方程【考试指导】由题意知,b=-2a,则二次函数y=ax2+bx+c的对称轴方程x=-b/2a=1。
5.B
6.A本题主要考查的知识点为偶函数和减函数的性质.【应试指导】易知,A、C项为偶函数,B、D项为非奇非偶函数.在区间(0,3)上,C项中的函数为增函数,而A项中y=COSx的减区间为(2kπ,2kπ+π),故y=COSx在(0,3)上为减函数.
7.C
8.D
9.A
10.A随机事件的概率考查:,所以答案为:A
11.D由公差d<0知选项C,D符合题意,又由a2+a4=8,可知a3=4,代人知应选D.
【考点指要】本题考查等差数列的相关知识.对于公差不为0的等差数列,其通项公式的一般形式为an=an+b.本题也可列方程组进行求解.在解等差数列和等比数列的问题时,要注意性质的应用.
12.B
13.B
14.C
15.A
16.D双曲线的焦点在x轴上,易知a2=9,b2=16,故c2=a2+b2=9+16=25,因此焦点坐标为(-5,0),(5,0).
17.D
18.D
19.B
20.C本题主要考查的知识点为不等式的解集.【应试指导】
21.B此题暂无解析
22.B
23.D
24.B
25.A
26.A
27.C
28.A
29.B
30.B
31.y=x-2【考情点拨】本题主要考查的知识点为切线方程.【应试指导】32.【考点点拨】本题主要考查的知识点为不等式的解集.【考试指导】|x-1|<1→-1<x-1<1→0<x<2,故不等式|x-1|<1→-1
33.
34.
35.【答案】
36.
37.-4【考情点拨】本题主要考查的知识点为一元二次函数切线的斜率.【应试指导】
(-1,5)处的切线的斜率是-4.
38.
39.【考情点拨】本题主要考查的知识点为等比数列.【应试指导】
40.
41.42.【答案】5/9
【解析】从5位男生和4位女生中任选2人
43.
44.
45.
46.
【考点指要】本题主要考查三角函数的诱导公式、同角三角函数的关系及倍角公式等几个重要概念,考试大纲要求达到掌握和灵活运用的程度.在计算时注意三角函数的符号.47.答案:0.82首先计算5条鱼的总重量=5*0.8=4(kg),然后我们计算剩余两条鱼的总重量=4-0.75-0.83=1.64(kg),平均重量为1.64/2=0.82(kg).48.x+y=0本题考查了导数的几何意义的知识点。根据导数的几何意义,曲线在(0,0)处的切线斜率,则切线方程为y-0=-1·(x-0),化简得:x+y=0。49.【答案】{|x≤1或x≥2}
【解析】
所以函数的定义域为{|x≤1或x≥2}
50.-x2-2x.【考情点拨】本题主要考查的知识点为由函数图像求函数解析式的方法.【应试指导】
51.
52.
53.54.(I)由已知,椭圆的长轴长2a=4,焦距2c=2√3,设其短半轴长为b,则
55.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025中介顾问代理合同范本
- 房东定金合同
- Fun reading the three little pigs教学设计-2025-2026学年小学英语三年级下册清华大学版
- 南信学科教学数学试卷
- 施工合作合同
- 2025公司职员试用期合同协议书范本
- 2025年湖南省物业服务合同示范文本
- 2025合作经营合同书餐饮店长
- 2025房地产公司合同终止协议书
- 2.3.3近似数 说课稿 2024--2025学年人教版数学七年级上册
- 银行账户共管协议(三方)
- 中国急诊重症肺炎临床实践专家共识
- 第六单元实验活动3创新实验:二氧化碳的制取与性质一体化实验说课-2024-2025学年九年级化学人教版上册
- 中国文化概论·第九章·第一节(一)
- 广州市越秀区人民街道办事处招聘辅助人员考试试题及答案
- 《电力行业职业技能标准 农网配电营业工》
- JTG∕T F30-2014 公路水泥混凝土路面施工技术细则
- 篆刻学全套课件
- 旅行社挂靠合同协议书模板
- 环境污染物对人体健康影响的研究
- 检测和校准实验室能力的通用要求
评论
0/150
提交评论