




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.要使二次根式有意义,x必须满足()A.x≤2 B.x≥2 C.x<2 D.x>22.已知△ABC的三边分别是a、b、c,下列条件中不能判断△ABC为直角三角形的是()A.a2+b2=c2 B.∠A+∠B=90°C.a=3,b=4,c=5 D.∠A:∠B:∠C=3:4:53.已知点P的坐标为(a,b)(a>0),点Q的坐标为(c,2),且|a-c|+=0,将线段PQ向右平移a个单位长度,其扫过的面积为24,那么a+b+c的值为()A.12 B.14 C.16 D.204.如图所示,和都是边长为2的等边三角形,点在同一条直线上,连接,则的长为()A. B. C. D.5.如图,点是矩形的对角线的中点,是边的中点,若,则的长为()A.5 B.6 C.8 D.106.在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场,设有x个队参赛,根据题意,可列方程为()A. B.C. D.7.图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5=()度.A.270° B.300°C.360° D.400°8.下列代数式变形正确的是()A.x-yx2C.1xy÷(9.如图,平行四边形ABCD中,∠BDC=30°,DC=4,AE⊥BD于E,CF⊥BD于F,且E、F恰好是BD的三等分点,AE、CF的延长线分别交DC、AB于N、M点,那么四边形MENF的面积是()A. B. C.2 D.210.如图,在矩形ABCD中,AB=3,AD=4,点P在AB上,PE⊥AC于E,PF⊥BD于F,则PE+PF等于()A. B. C. D.11.若,则下列不等式成立的是()A. B. C. D.12.若点在反比例函数的图像上,则下列各点一定在该图像上的是()A. B. C. D.二、填空题(每题4分,共24分)13.某校射击队从甲、乙、丙、丁四人中选拔一人参加市运动会射击比赛.在选拔比赛中,每人射击10次,他们10次成绩的平均数及方差如下表所示:甲乙丙丁平均数/环9.59.59.59.5方差/环25.14.74.55.1请你根据表中数据选一人参加比赛,最合适的人选是________.14.如图,菱形ABCD的边长为2,点E,F分别是边AD,CD上的两个动点,且满足AE+CF=BD=2,设△BEF的面积为S,则S的取值范围是______.15.一次函数y=kx+b的图象如图所示,则不等式kx+b<0的解集为__________.16.如图,在菱形ABCD中,对角线AC,BD相交于点O,E为AB的中点,且OE=a,则菱形ABCD的周长为_____.17.定义运算“”:a*b=a-ab,若,,a*b,则x的值为_________.18.如图,正方形ABCD的面积为,则图中阴影部分的面积为______________.三、解答题(共78分)19.(8分)计算:16﹣(π﹣2019)0+2﹣1.20.(8分)已知,如图,在ABCD中,E、F是对角线AC上的两点,且AE=CF,求证:DE=BF21.(8分)点向__________平移2个单位后,所对应的点的坐标是.22.(10分)在矩形中,,,将沿着对角线对折得到.(1)如图,交于点,于点,求的长.(2)如图,再将沿着对角线对折得到,顺次连接、、、,求:四边形的面积.23.(10分)先化简,再求值:其中24.(10分)如图,在▱ABCD中,E,F是对角线AC上不同两点,,求证:四边形BFDE是平行四边形.25.(12分)(1)计算:(2)如图,E、F是矩形ABCD边BC上的两点,且AF=DE.求证:BE=CF.26.解不等式组并求出其整数解
参考答案一、选择题(每题4分,共48分)1、B【解析】试题分析:根据二次根式的意义可知二次根式有意义的条件是被开方数大于等于0,因此可得x-1≥0,解这个不等式可得x≥1.故选B考点:二次根式的意义2、D【解析】分析:利用直角三角形的定义和勾股定理的逆定理逐项判断即可.详解:A.a2=b2+c2,符合勾股定理的逆定理,能够判定△ABC为直角三角形,不符合题意;B.∠A+∠B=∠C,此时∠C是直角,能够判定△ABC是直角三角形,不符合题意;C.52=32+42,符合勾股定理的逆定理,能够判定△ABC为直角三角形,不符合题意;D.∠A:∠B:∠C=3:4:5,那么∠A=45°、∠B=60°、∠C=75°,△ABC不是直角三角形;故选D.点睛:此题主要考查了直角三角形的判定方法,只有三角形的三边长构成勾股数或三个内角中有一个是直角的情况下,才能判定三角形是直角三角形.3、C【解析】
有非负数的性质得到a=c,b=8,,PQ∥y轴,由于其扫过的图形是矩形可求得,代入即可求得结论.【详解】解:|a-c|+=0,∴a=c,b=8,,PQ∥y轴,∴PQ=8-2=6,将线段PQ向右平移a个单位长度,其扫过的图形是边长为a和6的矩形,,∴a=4,∴c=4,∴a+b+c=4+8+4=16;故选:C.【点睛】本题主要考查了非负数的性质,坐标的平移,矩形的性质,能根据点的坐标判断出PQ∥y轴,进而求得PQ是解题的关键.4、B【解析】
根据等边三角形的性质、等腰三角形的性质和三角形的外角的性质可以发现,再进一步根据勾股定理进行求解.【详解】解:和都是边长为2的等边三角形,,.且...故选:B.【点睛】此题综合运用了等边三角形的性质、等腰三角形的性质、三角形的外角的性质和勾股定理.5、A【解析】
由中位线定理可知CD的长,根据勾股定理求出AC的长,由直角三角形中斜边上的中线是斜边的一半可知OB长.【详解】解:点是的中点,是边的中点,由矩形ABCD得根据勾股定理得故答案为:A【点睛】本题考查了直角三角形及中位线定理,熟练掌握直角三角形的特殊性质是解题的关键.6、A【解析】
共有x个队参加比赛,则每队参加(x-1)场比赛,但2队之间只有1场比赛,根据共安排36场比赛,列方程即可.【详解】解:设有x个队参赛,根据题意,可列方程为:x(x﹣1)=36,故选:A.【点睛】此题考查由实际问题抽象出一元二次方程,解题关键在于得到比赛总场数的等量关系.7、C【解析】
根据多边形的外角和等于360°解答即可.【详解】由多边形的外角和等于360°可知,
∠1+∠2+∠3+∠4+∠5=360°,
故答案为:360°.【点睛】本题考查的是多边形的内角和外角,掌握多边形的外角和等于360°是解题的关键.8、D【解析】
利用分式的基本性质对四个选项一一进行恒等变形,即可得出正确答案.【详解】解:A.x-yxB.-x+y2=-C.1xyD.x-yx+y故选D.【点睛】本题考查了分式的基本性质.熟练应用分式的基本性质对分式进行约分和通分是解题的关键.9、B【解析】
由已知条件可得EN与EF的长,进而可得Rt△NEF的面积,即可求解四边形MENF的面积.【详解】解:∵E,F为BD的三等分点,∴DE=EF=BF,∵AE⊥BD,CF⊥BD,∴EN∥FC,∴EN是△DFC的中位线,∴EN=FC.∵在Rt△DCF中,∠BDC=30°,DC=4,∴FC=2,∴EN=1,∴在Rt△DEN中,∠EDN=30°,∴DN=2EN=2,DE==,∴EF=DE=,∴S△ENF=×1×=,四边形MENF的面积=×2=.故选B.【点睛】本题考查了平行四边形的性质,三角形中位线定理.10、B【解析】试题解析:因为AB=3,AD=4,所以AC=5,,由图可知,AO=BO,则,因此,故本题应选B.11、B【解析】
总的来说,用不等号(<,>,≥,≤,≠)连接的式子叫做不等式.根据不等式的定义即可判定A错误,其余选型根据不等式的性质判定即可.【详解】A:a>b,则a-5>b-5,故A错误;B:a>b,-a<-b,则-2a<-2b,B选项正确.C:a>b,a+3>b+3,则>,则C选项错误.D:若0>a>b时,a2<b2,则D选项错误.故选B【点睛】本题主要考查不等式的定义及性质.熟练掌握不等式的性质才能避免出错.12、C【解析】
将点(-1,2)代入反比例函数,求得,再依次将各个选项代入解析式,即可求解.【详解】解:将点(-1,2)代入中,解得:,∴反比例函数解析式为,时,,A错误;时,,B错误;时,,C正确;时,,D错误;故选C.【点睛】本题考查反比例函数,难度一般,熟练掌握反比例函数上的点一定满足函数解析式,即可顺利解题.二、填空题(每题4分,共24分)13、丙【解析】分析:根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.详解:∵=5.1,=4.7,=4.5,=5.1,∴=>>,∴最合适的人选是丙.故答案为:丙.点睛:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.14、≤S≤.【解析】
先证明△BDE≌△BCF,再求出△BEF为正三角形即可解答.【详解】解:∵菱形ABCD的边长为2,BD=2,∴△ABD和△BCD都为正三角形,∴∠BDE=∠BCF=60°,BD=BC,∵AE+DE=AD=2,而AE+CF=2,∴DE=CF,∴△BDE≌△BCF(SAS);∴∠DBE=∠CBF,BE=BF,∵∠DBC=∠DBF+∠CBF=60°,∴∠DBF+∠DBE=60°即∠EBF=60°,∴△BEF为正三角形;设BE=BF=EF=x,则S=•x•x•sin60°=x2,当BE⊥AD时,x最小=2×sin60°=,∴S最小=×()2=,当BE与AB重合时,x最大=2,∴S最大=×22=,∴≤S≤.故答案为:≤S≤.【点睛】本题考查三角形全等和几何的综合运用,找出表示面积的方法是解题关键.15、x<1【解析】解:∵y=kx+b,kx+b<0,∴y<0,由图象可知:x<1.故答案为x<1.16、8a.【解析】
由菱形的性质易得AC⊥BD,由此可得∠AOB=90°,结合点E是AB边上的中点可得AB=2OE=a,再结合菱形的四边相等即可求得菱形ABCD的周长为8a.【详解】解:∵四边形ABCD是菱形,∴AB=BC=CD=AD,AC⊥BD,∴∠AOB=90°,又∵点E为AB边上的中点,OE=a,∴AB=2OE=2a,∴菱形ABCD的周长=2a×4=8a.故答案为:8a.【点睛】“由菱形的性质得到AC⊥BD,从而得到∠AOB=90°,结合点E是AB边上的中点,得到AB=2OE=2a”是正确解答本题的关键.17、±2【解析】
先根据新定义得出一元二次方程,求出方程的解即可.【详解】解:由题意可得:x+1-(x+1)•x=-3,
-x2=-4,
解得:x=±2,
故答案为:±2【点睛】本题考查了解一元二次方程的应用,解此题的关键是能根据已知得出一元二次方程,题目比较新颖,难度适中.18、【解析】试题分析:根据正方形的对称性,可知阴影部分的面积为正方形面积的一半,因此可知阴影部分的面积为.三、解答题(共78分)19、3【解析】
本题涉及零指数幂、负指数幂、二次根式化简3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【详解】解:原式=4-1+1【点睛】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.20、见解析【解析】
要证明DE=BF成立,只需要根据条件证△AED≌△CFB即可.【详解】证明:∵四边形ABCD是平行四边形.∴AD∥BC,且AD=BC∴∠DAE=∠BCF∴在△DAE和△BCF中∴△DAE≌△BCF(SAS)∴DE=BF.考点:1.平行四边形的性质;2.全等三角形的判定与性质.21、左【解析】
找到横纵坐标的变化情况,根据坐标的平移变换进行分析即可.【详解】解:纵坐标没有变化,横坐标的变化为:,说明向左平移了2个单位长度.故答案为:左.【点睛】本题考查了坐标与图形变化-平移,用到的知识点为:左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加.22、(1);(2)的面积是.【解析】
(1)由矩形的性质可得AB=CD=3,AD=BC=4,∠B=∠D=90°,AD∥BC,由勾股定理可求AC=5,由折叠的性质和平行线的性质可得AE=CE,由勾股定理可求AE的长,由三角形面积公式可求EF的长;(2)由折叠的性质可得AB=AM=3,CD=CN=3,∠BAC=∠CAM,∠ACD=∠ACN,AC⊥DN,DF=FN,由“SAS”可证△BAM≌△DCN,△AMD≌△CNB可得MD=BN,BM=DN,可得四边形MDNB是平行四边形,通过证明四边形MDNB是矩形,可得∠BND=90°,由三角形面积公式可求DF的长,由勾股定理可求BN的长,即可求四边形BMDN的面积.【详解】解:(1)∵四边形ABCD是矩形∴AB=CD=3,AD=BC=4,∠B=∠D=90°,AD∥BC∴AC==5,∵将Rt△ABC沿着对角线AC对折得到△AMC.∴∠BCA=∠ACE,∵AD∥BC∴∠DAC=∠BCA∴∠EAC=∠ECA∴AE=EC∵EC2=ED2+CD2,∴AE2=(4−AE)2+9,∴AE=,∵S△AEC=×AE×DC=×AC×EF,∴×3=5×EF,∴EF=;(2)如图所示:∵将Rt△ABC沿着对角线AC对折得到△AMC,将Rt△ADC沿着对角线AC对折得到△ANC,∴AB=AM=3,CD=CN=3,∠BAC=∠CAM,∠ACD=∠ACN,AC⊥DN,DF=FN,∵AB∥CD∴∠BAC=∠ACD∴∠BAC=∠ACD=∠CAM=∠ACN∴∠BAM=∠DCN,且BA=AM=CD=CN∴△BAM≌△DCN(SAS)∴BM=DN∵∠BAM=∠DCN∴∠BAM−90°=∠DCN−90°∴∠MAD=∠BCN,且AD=BC,AM=CN∴△AMD≌△CNB(SAS)∴MD=BN,且BM=DN∴四边形MDNB是平行四边形连接BD,由(1)可知:∠EAC=∠ECA,∵∠AMC=∠ADC=90°∴点A,点C,点D,点M四点共圆,∴∠ADM=∠ACM,∴∠ADM=∠CAD∴AC∥MD,且AC⊥DN∴MD⊥DN,∴四边形BNDM是矩形∴∠BND=90°∵S△ADC=×AD×CD=×AC×DF∴DF=∴DN=∵四边形ABCD是矩形∴AC=BD=5,∴BN=∴四边形BMDN的面积=BN×DN=×=.【点睛】本题是四边形综合题,考查了矩形的判定和性质,折叠的性质,勾股定理,全等三角形的判定和性质,证明四边形BNDM是矩形是本题的关键.23、【解析】
先去括号,再把除法统一为乘法把分式化简,再把数代入.【详解】解:原式当时,原式.【点睛】本题考查分式的混合运算
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 水稳站股份合同协议书
- 简短爱情协议书
- 地铁kpi绩效协议书
- 聚餐经费协议书
- 继续婚姻协议书
- 殡仪馆公建民营协议书
- 肉毒注射协议书
- 道和生发协议书
- 聘用店长协议书
- 贷款配资协议书
- 算力是人工智能的基础设施
- 电信总经理谈服务
- 2024年-2025年电梯检验员考试题库及答案
- 02J915 公用建筑卫生间
- 混凝土搅拌站安全操作技术交底
- 兽用生物制品保藏、运输管理和相应的应急预案制度
- 水域救援课件教学课件
- 学术论文文献阅读与机助汉英翻译智慧树知到答案2024年重庆大学
- (初级)航空油料特设维修员(五级)理论考试题库-上(单选题)
- 尾矿库安全规程
- 互联网+时代电商助农模式的优化策略:以S县为例9000字(论文)
评论
0/150
提交评论