




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图,函数y=2x-4与x轴.y轴交于点(2,0),(0,-4),当-4<y<0时,x的取值范围是()A.x<-1 B.-1<x<0 C.0<x<2 D.-1<x<22.在1x,3x+2,2x-6π,a-1A.1 B.2 C.3 D.43.以下说法正确的是()A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线互相垂直平分的四边形是菱形C.有三个内角相等的四边形是矩形D.对角线垂直且相等的四边形是正方形4.下列定理中没有逆定理的是()A.等腰三角形的两底角相等 B.平行四边形的对角线互相平分C.角平分线上的点到角两边的距离相等 D.全等三角形的对应角相等5.关于x的一元二次方程有两个不相等的实数根,则实数m的取值范围为()A. B. C. D.6.欧几里得的《原本》记载,形如的方程的图解法是:画,使,,,再在斜边上截取.则该方程的一个正根是()A.的长 B.的长 C.的长 D.的长7.下列分式的运算中,其中正确的是()A. B.=C.=a+b D.=a58.下列命题中,原命题和逆命题都是真命题的个数是()①两条对角线互相平分的四边形是平行四边形;②两条对角线相等的四边形是矩形;③菱形的两条对角线成互相垂直平分;④两条对角线互相垂直且相等的四边形是正方形.A.4 B.3 C.2 D.19.下列方程中,是一元二次方程的为()A. B. C. D.10.为增强学生体质,感受中国的传统文化,学校将国家级非物质文化遗产--“抖空竹”引入阳光特色大课间下面左图是某同学“抖空竹”时的一个瞬间,小聪把它抽象成右图的数学问题:已知,,,则的度数是A. B. C. D.11.已知xy=1A.32 B.13 C.212.一个多边形的内角和比其外角和的2倍多180°,那么这个多边形是()A.五边形 B.六边形 C.七边形 D.八边形二、填空题(每题4分,共24分)13.如图,已知△ABC的周长是1,连接△ABC三边的中点构成第二个三角形,再连接第二个三角形三边的中点构成第三个三角形…依此类推,则第2018个三角形的周长为________.14.如图,在中,,,,若点P是边AB上的一个动点,以每秒3个单位的速度按照从运动,同时点Q从以每秒1个单位的速度运动,当一个动点到达终点时,另一个动点也随之停止运动。在运动过程中,设运动时间为t,若为直角三角形,则t的值为________.15.如图,点A是函数y=kx(x<0)的图像上的一点,过点A作AB⊥y轴,垂足为点B,点C为x轴上的一点,连接AC,BC,若△ABC的面积为4,则16.已知一个样本的数据为1、2、3、4、x,它的平均数是3,则这个样本方差=_______17.如图,在平面直角坐标系中,AD∥BC,AD=5,B(-3,0),C(9,0),点E是BC的中点,点P是线段BC上一动点,当PB=________时,以点P、A、D、E为顶点的四边形是平行四边形.18.如图,菱形ABCD的边长为4,∠ABC=60°,且M为BC的中点,P是对角线BD上的一动点,则PM+PC的最小值为_____.三、解答题(共78分)19.(8分)如图,在平面直角坐标系内,顶点的坐标分别为,、.(1)平移,使点移到点,画出平移后的,并写出点的坐标.(2)将绕点旋转,得到,画出旋转后的,并写出点的坐标.(3)求(2)中的点旋转到点时,点经过的路径长(结果保留).20.(8分)解不等式组,并写出x的所有整数解.21.(8分)如图,在中,点,分别在,上,且,求证:四边形是平行四边形.22.(10分)已知:如图,C为线段BE上一点,AB∥DC,AB=EC,BC=CD.求证:∠A=∠E.23.(10分)如图,BD是△ABC的角平分线,点E,F分别在BC、AB上,且DE∥AB,EF∥AC.(1)求证:BE=AF;(2)若∠ABC=60°,BD=6,求四边形ADEF的面积。24.(10分)计算:(1);(2)已知,,求的值.25.(12分)解不等式组,并在数轴上把解集表示出来.26.某校检测学生跳绳水平,抽样调查了部分学生的“一分钟跳绳”成绩,并绘制了下面的频数分布直方图(每小组含最小值,不含最大值)和扇形图.(1)抽样的人数是________人,补全频数分布直方图,扇形中________;(2)本次调查数据的中位数落在________组;(3)如果“一分钟跳绳”成绩大于等于120次为优秀,那么该校2250名学生中“1分钟跳绳”成绩为优秀的大约有多少人?
参考答案一、选择题(每题4分,共48分)1、C【解析】
由图知,当时,,由此即可得出答案.【详解】函数与x轴、y轴交于点即当时,函数值y的范围是因此,当时,x的取值范围是故选:C.【点睛】本题考查了一次函数与一元一次不等式,认真体会一次函数与一元一次不等式(组)之间的内在联系及数形结合思想,理解一次函数的增减性是解决本题的关键.2、B【解析】
判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【详解】解:1x,a-故选:B.【点睛】考查了分式的定义,一般地,如果A,B表示两个整式,并且B中含有字母,那么式子AB3、B【解析】
根据平行四边形与特殊平行四边形的判定定理判断即可.【详解】A.一组对边平行且相等的四边形是平行四边形,一组对边平行,另一组对边相等的四边形是可能是等腰梯形,故A错误;B.对角线互相垂直平分的四边形是菱形,正确;C.有三个内角都是直角的四边形是矩形,三个相等的内角不是直角,那么也不能判定为矩形,故C错误;D.对角线垂直平分且相等的四边形是正方形,故D错误.故选B.【点睛】本题考查平行四边形与特殊平行四边形的判定定理,熟练掌握判定定理是解题的关键.4、D【解析】
先写出各选项的逆命题,判断出其真假即可解答.【详解】解:A、其逆命题是“一个三角形的两个底角相等,则这个三角形是等腰三角形”,正确,所以有逆定理;B、其逆命题是“对角线互相平分的四边形是平行四边形”,正确,所以有逆定理;C、其逆命题是“到角两边的距离相等的点在角平分线上”,正确,所以有逆定理;D、其逆命题是“两个三角形中,三组角分别对应相等,则这两个三角形全等”,错误,所以没有逆定理;故选:D.【点睛】本题考查的是命题与定理的区别,正确的命题叫定理.5、B【解析】
根据方程有两个不等的实数根,故△>0,得不等式解答即可.【详解】试题分析:由已知得△>0,即(﹣3)2﹣4m>0,解得m<.故选B.【点睛】此题考查了一元二次方程根的判别式.6、B【解析】【分析】可以利用求根公式求出方程的根,根据勾股定理求出AB的长,进而求得AD的长,即可发现结论.【解答】用求根公式求得:∵∴∴AD的长就是方程的正根.故选B.【点评】考查解一元二次方程已经勾股定理等,熟练掌握公式法解一元二次方程是解题的关键.7、B【解析】
根据分式的运算法则即可求出答案.【详解】解:(A)原式=,故A错误.(B)原式=,故B正确.(C)原式=,故C错误.(D)原式=,故D错误.故选:B.【点睛】本题主要考查了分式化简的知识点,准确的计算是解题的关键.8、C【解析】
分别写出各个命题的逆命题,然后对原命题和逆命题分别进行判断即可.【详解】解:①两条对角线互相平分的四边形是平行四边形,为真命题;其逆命题为平行四边形的对角线互相平分,为真命题;
②两条对角线相等的四边形是矩形,为假命题;逆命题为:矩形的对角线相等,是真命题;
③菱形的两条对角线互相垂直平分,为真命题;逆命题为:对角线互相垂直平分的四边形是菱形,为真命题;
④两条对角线互相垂直且相等的四边形是正方形,为假命题;其逆命题为:正方形的对角线互相垂直且相等,为真命题,
故选:C.【点睛】本题考查命题与定理的知识,解题的关键是能够写出该命题的逆命题.9、B【解析】
根据一元二次方程的概念逐一进行判断即可得.【详解】A.,当a=0时,不是一元二次方程,故不符合题意;B.,是一元二次方程,符合题意;C.,不是整式方程,故不符合题意;D.,整理得:2+x=0,不是一元二次方程,故不符合题意,故选B.【点睛】本题考查了一元二次方程的定义,熟练掌握“只含一个未知数,并且含有未知数的项的次数最高为2次的整式方程是一元二次方程”是解题的关键.10、A【解析】
直接利用平行线的性质得出,进而利用三角形的外角得出答案.【详解】如图所示:延长DC交AE于点F,,,,,.故选A.【点睛】本题考查了平行线的性质、三角形外角的性质,正确添加辅助线、熟练掌握平行线的性质是解题的关键.11、A【解析】
由题干可得y=2x,代入x+yy【详解】∵xy∴y=2x,∴x+yy故选A.【点睛】本题考查了比例的基本性质:两内项之积等于两外项之积.即若ab=cd,则12、C【解析】
设这个多边形的边数为n,根据多边形内角和公式和外角和定理建立方程求解.【详解】设这个多边形的边数为n,由题意得解得:故选C.【点睛】本题考查多边形的内角和与外角和,熟记多边形内角和公式,以及外角和360°,是解题的关键.二、填空题(每题4分,共24分)13、【解析】分析:根据三角形中位线定理求出第二个三角形的周长、第三个三角形的周长,总结规律,得到答案.详解:根据三角形中位线定理得到第二个三角形三边长是△ABC的三边长的一半,即第二个三角形的周长为,则第三个三角形的周长为,∴第2018个三角形的周长为;故答案为:.点睛:本题考查的是三角形中位线定理的应用,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.14、或或【解析】
由已知得出∠B=60°,AB=2BC=18,①当∠BQP=90°时,则∠BPQ=30°,BP=2BQ,得出18-3t=2t,解得t=;②当∠QPB=90°时,则∠BQP=30°,BQ=2BP,若0<t<6时,则t=2(18-3t),解得t=,若6<t≤9时,则t=2(3t-18),解得t=.【详解】解:∵∠C=90°,∠A=30°,BC=9,∴∠B=60°,AB=2BC=18,①当∠BQP=90°时,如图1所示:则AC∥PQ,∴∠BPQ=30°,BP=2BQ,∵BP=18-3t,BQ=t,∴18-3t=2t,解得:t=;②当∠QPB=90°时,如图2所示:∵∠B=60°,∴∠BQP=30°,∴BQ=2BP,若0<t<6时,则t=2(18-3t),解得:t=,若6<t≤9时,则t=2(3t-18),解得:t=;故答案为:或或.【点睛】本题考查了含30°角直角三角形的判定与性质、平行线的判定与性质等知识,熟练掌握含30°角直角三角形的性质是解题的关键.15、-1【解析】
连结OA,如图,利用三角形面积公式得到S△OAB=S△ABC=4,再根据反比例函数的比例系数k的几何意义得到12|k|=4,然后去绝对值即可得到满足条件的【详解】解:连结OA,如图,
∵AB⊥y轴,
∴OC∥AB,
∴S△OAB=S△ABC=4,
而S△OAB=12|k|,
∴12|k|=4,
∵k<0,
∴k=-1.【点睛】本题考查了反比例函数的比例系数k的几何意义:在反比例函数y=kx(x<0)图象中任取一点,过这一个点向x轴和y16、2【解析】
已知该样本有5个数据.故总数=3×5=15,则x=15-1-2-3-4=5,则该样本方差=.【点睛】本题难度较低,主要考查学生对简单统计中平均数与方差知识点的掌握,计算方差的步骤是:①计算数据的平均数;②计算偏差,即每个数据与平均数的差;③计算偏差的平方和;④偏差的平方和除以数据个数.17、1或11【解析】
根据题意求得AD的值,再利用平行四边形性质分类讨论,即可解决问题.【详解】∵B(-3,0),C(9,0)∴BC=12∵点E是BC的中点∴BE=CE=6∵AD∥BC∴AD=5∴当PE=5时,以点P、A、D、E为顶点的四边形是平行四边形.分两种情况:当点P在点E左边时,PB=BE-PE=6-5=1;②当点P在点E右边时,PB=BE+PE=6+5=11综上所述,当PB的长为1或11时,以点P、A、D、E为顶点的四边形是平行四边形.【点睛】本题考查了平行四边形的性质,注意分类讨论思想的运用.18、2【解析】
连接AC,∵四边形ABCD为菱形,∴AB=BC=4,A、C关于BD对称,∴连AM交BD于P,则PM+PC=PM+AP=AM,根据两点之间线段最短,AM的长即为PM+PC的最小值.∵∠ABC=60°,AB=BC,∴△ABC为等边三角形,又∵BM=CM,∴AM⊥BC,∴AM=,故答案为:2.【点睛】本题考查了菱形的性质,等边三角形的判定与性质,勾股定理,轴对称中的最短路径问题,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.三、解答题(共78分)19、(1),见解析;(2),见解析;(3).【解析】
(1)根据点移到点,可得出平移的方向和距离,然后利用平移的性质分别求出点A1、B1的坐标即可解决问题;(2)根据中心对称的性质,作出A、B、C的对应点A2、B2、C2,进一步即可解决问题;(3)利用勾股定理计算CC2的长,再判断出点C经过的路径长是以CC2为直径的半圆,然后根据圆的周长公式计算即可.【详解】解:解:(1)如图所示,则△A1B1C1为所求作的三角形,点A1的坐标是(﹣4,﹣1);(2)如图所示,则△A2B2C2为所求作的三角形,点A2的坐标是(4,2);(3)点C经过的路径长:是以(0,3)为圆心,以CC2为直径的半圆,由勾股定理得:CC2=,∴点C经过的路径长:×π×=2π.【点睛】本题考查平移变换、旋转变换和勾股定理等知识,解题的关键是正确作出平移和旋转后的对应点.20、;【解析】
分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:解不等式①,得:.解不等式②,得:.则不等式组的解集为.∴不等式组的整数解为:.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21、见解析.【解析】
先根据平行四边形的性质得AB∥CD,则利用AE=CF,则可判断四边形AECF为平行四边形.【详解】四边形是平行四边形,.又`四边形是平行四边形.【点睛】本题考查平行四边形的性质和判定,能灵活运用定理进行推理是解题的关键.22、见解析【解析】
直接利用全等三角形的判定方法得出△ABC≌△ECD,即可得出答案.【详解】证明:∵AB∥DC,∴∠B=∠ECD,在△ABC和△ECD中,,∴△ABC≌△ECD(SAS),∴∠A=∠E(全等三角形的对应角相等).【点睛】本题考查了全等三角形的判定与性质,解题的关键是熟练的掌握全等三角形的判定与性质.23、(1)详见解析;(2)【解析】
(1)由DE∥AB,EF∥AC,可证得四边形ADEF是平行四边形,∠ABD=∠BDE,又由BD是△ABC的角平分线,易得△BDE是等腰三角形,即可证得结论;(2)首先过点D作DG⊥AB于点G,过点E作EH⊥BD于点H,易求得DG与DE的长,继而求得答案.【详解】(1)证明:∵DE∥AB,EF∥AC,∴四边形ADEF是平行四边形,∠ABD=∠BDE,∴AF=DE,∵BD是△ABC的角平分线,∴∠ABD=∠DBE,∴∠DBE=∠BDE,∴BE=DE,∴BE=AF;(2)过点D作DG⊥AB于点G,过点E作EH⊥BD于点H,∵∠ABC=60°,BD是∠ABC的平分线,∴∠ABD=∠EBD=30°,∴DG=BD=×6=3,∵BE=DE,∴BH=DH=BD=3,∴BE==2,∴DE=BE=2,∴四边形ADEF的面积为:DE⋅DG=6.【点睛】此题考查角平分线的性质,平行四边形的判定与性质,等腰三角形的判定与性质,含30度角的直角三角形,解题关键在于作辅助线24、(1);(2)15.【解析】
(1)根据二次根式性质化简后合并求解即可;(2)先对变形得,先分别求出,,代入即可.【详解】解:(1)原式;(2)变形得,根据题意,,代入得:.【
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论