2023届杭州市重点中学数学八下期末教学质量检测试题含解析_第1页
2023届杭州市重点中学数学八下期末教学质量检测试题含解析_第2页
2023届杭州市重点中学数学八下期末教学质量检测试题含解析_第3页
2023届杭州市重点中学数学八下期末教学质量检测试题含解析_第4页
2023届杭州市重点中学数学八下期末教学质量检测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,在△ABC中,BF平分∠ABC,过A点作AF⊥BF,垂足为F并延长交BC于点G,D为AB中点,连接DF延长交AC于点E。若AB=12,BC=20,则线段EF的长为()A.2 B.3 C.4 D.52.如图,点是线段的中点,分别以为边作等腰和等腰,,连接,且相交于点,交于点,则下列说法中,不正确的是()A.是的中线 B.四边形是平行四边形C. D.平分3.若关于的分式方程有增根,则的值是().A. B.C. D.或4.重庆、昆明两地相距700km.渝昆高速公路开通后,在重庆、昆明两地间行驶的长途客车平均速度提高了25km/h,而从重庆地到昆明的时间缩短了3小时.求长途客车原来的平均速度.设长途客车原来的平均速度为xkm/h,则根据题意可列方程为()A.700x-C.700x-5.如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若∠CBF=20°,则∠DEF的度数是()A.25° B.40° C.45° D.50°6.函数的自变量的取值范围是()A. B. C. D.7.如图,在中,,AD平分,,,那么点D到直线AB的距离是()A.2cm B.4cm C.6cm D.10cm8.一次函数y=kx+b(k,b是常数,k≠0)的图象如图所示,则不等式kx+b>0的解集为()A.x>-3 B.x>0 C.x<-2 D.x<09.直角三角形的两条直角边分别是6,8,则此直角三角形三条中线的和是()A. B.C. D.10.袋中有红球4个,白球若干个,它们只有颜色上的区别,从袋中随机地取出一个球,如果取得白球的可能性较大,那么袋中白球可能有()A.3个 B.不足3个C.4个 D.5个或5个以上11.已知点,点都在直线上,则,的大小关系是()A. B. C. D.无法确定12.如图,在△ABC中,AB=3,AC=4,BC=1,△ABD,△ACE,△BCF都是等边三角形,下列结论中:①AB⊥AC;②四边形AEFD是平行四边形;③∠DFE=110°;④S四边形AEFD=1.正确的个数是()A.1个 B.2个C.3个 D.4个二、填空题(每题4分,共24分)13.如图所示,过y轴正半轴上的任意一点P,作x轴的平行线,分别与反比例函数的图象交于点A和点B,若点C是x轴上任意一点,连接AC、BC,则△ABC的面积为_________.14.已知四边形中,,,含角()的直角三角板(如图)在图中平移,直角边,顶点、分别在边、上,延长到点,使,若,,则点从点平移到点的过程中,点的运动路径长为__________.15.2名男生和2名女生抓阄分派2张电影票,恰好2名女生得到电影票的概率是.16.在菱形ABCD中,对角线AC、BD交于点O,点F为BC中点,过点F作FE⊥BC于点F交BD于点E,连接CE,若∠BDC=34°,则∠ECA=_____°.17.某学生会倡导的“爱心捐款”活动结束后,学生会干部对捐款情况作了抽样调查,并绘制了统计图,图中从左到右各长方形高度之比为,又知此次调查中捐15元和20元的人数共26人.(1)他们一共抽查了______人;(2)抽查的这些学生,总共捐款______元.18.平行四边形的一个内角平分线将该平行四边形的一边分为2cm和3cm两部分,则该平行四边形的周长为______.三、解答题(共78分)19.(8分)已知:如图,四边形ABCD为矩形,AB=10,BC=3,点E是CD的中点,点P在AB上以每秒2个单位的速度由A向B运动,设运动时间为t秒.(1)当点P在线段AB上运动了t秒时,BP=__________________(用代数式表示);(2)t为何值时,四边形PDEB是平行四边形:(3)在直线AB上是否存在点Q,使以D、E、Q、P四点为顶点的四边形是菱形?若存在,求出t的值:若不存在,说明理由.20.(8分)如图,在中,,点为边上的动点,点从点出发,沿边向点运动,当运动到点时停止,若设点运动的时间为秒,点运动的速度为每秒2个单位长度.(1)当时,=,=;(2)求当为何值时,是直角三角形,说明理由;(3)求当为何值时,,并说明理由.21.(8分)如图,已知矩形ABCD的边长AB=3cm,BC=6cm,某一时刻,动点M从点A出发沿AB方向以1cm/s的速度向点B匀速运动;同时,动点N从点D沿DA方向以2cm/s的速度向点A匀速运动.(1)经过多少时间,△AMN的面积等于矩形ABCD面积的19(2)是否存在时刻t,使A、M、N为顶点的三角形与△ACD相似?若存在,求t的值;若不存在,请说明理由.22.(10分)(1)如图1,已知正方形ABCD,点M和N分别是边BC,CD上的点,且BM=CN,连接AM和BN,交于点P.猜想AM与BN的位置关系,并证明你的结论;(2)如图2,将图(1)中的△APB绕着点B逆时针旋转90º,得到△A′P′B,延长A′P′交AP于点E,试判断四边形BPEP′的形状,并说明理由.23.(10分)某商店在今年2月底以每袋23元的成本价收购一批农产品准备向外销售,当此农产品售价为每袋36元时,3月份销售125袋,4、5月份该农产品十分畅销,销售量持续走高.在售价不变的基础上,5月份的销售量达到180袋.设4、5这两个月销售量的月平均增长率不变.(1)求4、5这两个月销售量的月平均增长率;(2)6月份起,该商店采用降价促销的方式回馈顾客,经调查发现,该农产品每降价1元/袋,销量就增加4袋,当农产品每袋降价多少元时,该商店6月份获利1920元?24.(10分)已知函数y=(2m+1)x+m﹣3;(1)若函数图象经过原点,求m的值;(2)若函数图象在y轴的截距为﹣2,求m的值;(3)若函数的图象平行直线y=3x﹣3,求m的值;(4)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.25.(12分)先化简,再求值:,其中x是不等式的负整数解.26.化简求值:,其中x=1.

参考答案一、选择题(每题4分,共48分)1、C【解析】

由直角三角形的性质可求得DF=BD=AB,由角平分线的定义可证得DE∥BC,利用三角形中位线定理可求得DE的长,则可求得EF的长.【详解】解:∵AF⊥BF,D为AB的中点,∴DF=DB=AB=6,∴∠DBF=∠DFB,∵BF平分∠ABC,∴∠DBF=∠CBF,∴∠DFB=∠CBF,∴DE∥BC,∴DE为△ABC的中位线,∴DE=BC=10,∴EF=DE−DF=10−6=4,故选:C.【点睛】本题考查直角三角形斜边上的中线的性质,角平分线的性质,等腰三角形的判定与性质,三角形中位线定理.根据直角三角形斜边上的中线是斜边是斜边的一半可得△DBF为等腰三角形,通过角平分线的性质和等角对等边可得DF//BC,即DE为△ABC的中位线,从而计算出DE,继而求出EF.2、D【解析】

根据平行四边形、全等三角形的判定与性质以及等腰三角形三线合一的性质,逐一判定即可.【详解】∵点是线段的中点,∴BC=EC∵等腰和等腰,,∴AB=AC=CD=DE,∠ABC=∠ACB=∠DCE=∠DEC=45°∴∠ACD=90°,AD=BC=EC∴∠CAD=∠CDA=45°∴AD∥BE∴四边形是平行四边形,故B选项正确;在△ABE和△DEB中,∴△ABE≌△DEB(SAS)∴,故C选项正确;∴∠DBE=∠AEB∴FC⊥BE∵AD∥BE∴FC⊥AD∴是的中线,故A选项正确;∵AC≠CE∴不可能平分,故D选项错误;故选:D.【点睛】此题主要考查平行四边形、全等三角形的判定与性质以及等腰三角形的性质,熟练掌握,即可解题.3、A【解析】

方程两边都乘以最简公分母(x-3),把分式方程化为整式方程,再根据分式方程的增根就是使最简公分母等于0的未知数的值求出x的值,然后代入进行计算即可求出m的值.【详解】方程两边都乘以(x−3)得,2−x−m=2(x−3),∵分式方程有增根,∴x−3=0,解得x=3,∴2−3−m=2(3−3),解得m=−1.故选A.4、A【解析】

设长途客车原来的平均速度为xkm/h,根据从重庆地到昆明的时间缩短了3小时,得出方程即可.【详解】解:设长途客车原来的平均速度为xkm/h,则原来从重庆地到昆明的时间为700x平均速度提高了25km/h后所花时间为700x+25,根据题意提速后所花时间缩短3∴700x故选:A.【点睛】此题主要考查了由实际问题抽象出分式方程,根据题意得出正确等量关系是解题关键.5、D【解析】

首先根据题意证明,则可得,根据∠CBF=20°可计算的的度数,再依据进而计算∠DEF的度数.【详解】解:四边形ABCD为正方形BC=DCEC=EC在直角三角形BCF中,∠DEF=50°故选D.【点睛】本题主要考查正方形的性质,是基本知识点,应当熟练掌握.6、B【解析】

根据分母为零无意义,可得答案.【详解】解:由题意,得,解得,故选:B.【点睛】本题考查了函数自变量的取值范围,利用分母不等于零得出不等式是解题关键.7、B【解析】

过点D作DE⊥AB于E,然后根据角平分线上的点到角的两边的距离相等的性质可得DE=CD,再代入数据求出CD,即可得解.【详解】解:如图,过点D作DE⊥AB于E,

∵∠C=90°,AD平分∠CAB,

∴DE=CD,

∵BC=12cm,BD=8cm,

∴CD=BC-BD=12-8=4cm,

∴DE=4cm.

故选B.【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,是基础题,熟记性质是解题的关键.8、A【解析】

由图象可知kx+b=0的解为x=−1,所以kx+b>0的解集也可观察出来.【详解】从图象得知一次函数y=kx+b(k,b是常数,k≠0)的图象经过点(−1,0),并且函数值y随x的增大而增大,因而则不等式kx+b>0的解集是x>−1.故选:A.【点睛】本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.9、C【解析】

利用勾股定理,根据中线的定义计算即可.【详解】解:∵直角三角形的两条直角边分别是6,8,∴斜边=10,∴此直角三角形三条中线的和=,故选:C.【点睛】此题考查了勾股定理的运用以及中线的定义,比较基础,注意数据的计算.10、D【解析】根据取到白球的可能性较大可以判断出白球的数量大于红球的数量,从而得解.解:∵袋中有红球4个,取到白球的可能性较大,∴袋中的白球数量大于红球数量,即袋中白球的个数可能是5个或5个以上.故选D.11、A【解析】

根据一次函数的性质,当k<0时,y随x的增大而减小,可以解答本题.【详解】解:∵y=-3x+2,k=-3<0,∴y随x的增大而减小,∵点A(-1,y1),B(2,y2)都在直线y=-3x+2上,∴y1>y2,故选:A.【点睛】本题考查一次函数y=kx+b(k≠0,且k,b为常数)的图象性质:当k>0时,y随x的增大而增大;当k<0时,y将随x的增大而减小.12、C【解析】

由,得出∠BAC=90°,则①正确;由等边三角形的性质得∠DAB=∠EAC=60°,则∠DAE=110°,由SAS证得△ABC≌△DBF,得AC=DF=AE=4,同理△ABC≌△EFC(SAS),得AB=EF=AD=3,得出四边形AEFD是平行四边形,则②正确;由平行四边形的性质得∠DFE=∠DAE=110°,则③正确;∠FDA=180°-∠DFE=30°,过点作于点,,则④不正确;即可得出结果.【详解】解:∵,∴,∴∠BAC=90°,∴AB⊥AC,故①正确;∵△ABD,△ACE都是等边三角形,∴∠DAB=∠EAC=60°,又∴∠BAC=90°,∴∠DAE=110°,∵△ABD和△FBC都是等边三角形,∴BD=BA,BF=BC,∠DBF+∠FBA=∠ABC+∠ABF=60°,∴∠DBF=∠ABC,在△ABC与△DBF中,,∴△ABC≌△DBF(SAS),∴AC=DF=AE=4,同理可证:△ABC≌△EFC(SAS),∴AB=EF=AD=3,∴四边形AEFD是平行四边形,故②正确;∴∠DFE=∠DAE=110°,故③正确;∴∠FDA=180°-∠DFE=180°-110°=30°,过点作于点,∴,故④不正确;∴正确的个数是3个,故选:C.【点睛】本题考查了平行四边形的判定与性质、勾股定理的逆定理、全等三角形的判定与性质、等边三角形的性质、平角、周角、平行是四边形面积的计算等知识;熟练掌握平行四边形的判定与性质是解题的关键.二、填空题(每题4分,共24分)13、1.【解析】

设P(0,b),∵直线APB∥x轴,∴A,B两点的纵坐标都为b,而点A在反比例函数y=的图象上,∴当y=b,x=-,即A点坐标为(-,b),又∵点B在反比例函数y=的图象上,∴当y=b,x=,即B点坐标为(,b),∴AB=-(-)=,∴S△ABC=•AB•OP=••b=1.14、【解析】

当点P与B重合时,推出△AQK为等腰直角三角形,得出QK的长度,当点M′与D重合时,推出△KQ′M′为等腰直角三角形,得出KQ′的长度,根据题意分析出点Q的运动路径为QK+KQ′,从而得出结果.【详解】解:如图当点M与A重合时,∵∠ABC=45°,∠ANB=90°,PN=MN=CD=3,BN=MN=3,∴此时PB=3-3,∵运动过程中,QM=PB,当点P与B重合时,点M运动到点K,此时点Q在点K的位置,AK即AM的长等于原先PB和AQ的长,即3-3,∴△AQK为等腰直角三角形,∴QK=AQ=3-3,当点M′与D重合时,P′B=BC-P′C=10-3=Q′M′,∵AD=BC-BN=BC-AN=BC-DC=7,KD=AD-AK=7-(3-3)=10-3,Q′M′=BP′=BC-P′C=BC-PN=10-3,∴△KQ′M′为等腰直角三角形,∴KQ′=Q′M′=(10-3)=,当点M从点A平移到点D的过程中,点Q的运动路径长为QK+KQ′,∴QK+KQ′=(3-3)+()=7,故答案为7.【点睛】本题考查平移变换、运动轨迹、解直角三角形等知识,解题的关键是理解题意,学会用转化的思想思考问题,属于中考常考题型.15、.【解析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好2名女生得到电影票的情况,再利用概率公式求解即可求得答案.解:画树状图得:∵共有12种等可能的结果,恰好2名女生得到电影票的有2种情况,∴恰好2名女生得到电影票的概率是:=.故答案为:.16、1.【解析】

根据菱形的性质可求出∠DBC和∠BCA度数,再根据线段垂直平分线的性质可知∠ECB=∠EBC,从而得出∠ECA=∠BCA﹣∠ECB度数.【详解】解:∵四边形ABCD是菱形,∴AC⊥BD,∠BDC=∠DBC=34°.∠BCA=∠DCO=90°﹣34°=56°.∵EF垂直平分BC,∴∠ECF=∠DBC=34°.∴∠ECA=56°﹣34°=1°.故答案为1.【点睛】本题考查了菱形的性质及线段垂直平分线的性质,综合运用上述知识进行推导论证是解题的关键.17、1,2.【解析】

(1)设捐款5元,10元,15元,20元,30元的人数分别为3x人,4x人,5x人,8x人,2x人.构建方程即可解决问题.(2)根据捐款人数以及捐款金额,求出总金额即可.【详解】解:(1)设捐款5元,10元,15元,20元,30元的人数分别为3x人,4x人,5x人,8x人,2x人.由题意:5x+8x=26,解得x=2,∴一共有:6+8+10+16+4=1人,故答案为1.(2)总共捐款额=6×5+8×10+10×15+16×20+4×30=2(元).故答案为:2.【点睛】本题考查频数分布直方图,抽样调查等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.18、14cm或16cm【解析】试题分析:根据题意画出图形,由平行四边形得出对边平行,又由角平分线可以得出△ABE为等腰三角形,然后分别讨论BE=2cm,CE=3cm或BE=3cm,CE=2cm,继而求得答案.解:如图,∵四边形ABCD为平行四边形,∴AD∥BC,∴∠DAE=∠AEB,∵AE为角平分线,∴∠DAE=∠BAE,∴∠AEB=∠BAE,∴AB=BE,∴①当AB=BE=2cm,CE=3cm时,则周长为14cm;②当AB=BE=3cm时,CE=2cm,则周长为16cm.故答案为14cm或16cm.考点:平行四边形的性质.三、解答题(共78分)19、(1)10-2t;(2)当t=2.5s时,四边形PDEB是平行四边形;(3)t的值为12s或2s或【解析】

(1)求出PA,根据线段和差定义即可解决问题.(2)根据PB=DE,构建方程即可解决问题.(3)①当EP=ED=5时,可得四边形DEPQ,四边形DEP'Q'是菱形,②当DP″=DE【详解】解:(1)∵AB=10,PA=2t,∴BP=10-2t,故答案为10-2t.(2)当PB=DE时,四边形PDEB是平行四边形,∴10-2t=5,∴t=2.5,答:当t=2.5s时,四边形PDEB是平行四边形.(3)存在.①当EP=ED=5时,可得四边形DEPQ,四边形DEP'Q'是菱形,作EH⊥AB于H.在Rt△PEH中,∵PE=5,EH=BC=3,∴PH=5∴AP=1或AP'=9,∴t=12s或92s②当DP″=DE时,可得四边形DE∴t=2,综上所述,满足条件的t的值为12s或2s或【点睛】本题属于四边形即综合题,考查了矩形的性质,菱形的判定和性质,平行四边形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.20、(1)CD=4,AD=16;(2)当t=3.6或10秒时,是直角三角形,理由见解析;(3)当t=7.2秒时,,理由见解析【解析】

(1)根据CD=速度×时间列式计算即可得解,利用勾股定理列式求出AC,再根据AD=AC-CD代入数据进行计算即可得解;

(2)分①∠CDB=90°时,利用△ABC的面积列式计算即可求出BD,然后利用勾股定理列式求解得到CD,再根据时间=路程÷速度计算;②∠CBD=90°时,点D和点A重合,然后根据时间=路程÷速度计算即可得解;

(3)过点B作BF⊥AC于F,根据等腰三角形三线合一的性质可得CD=2CF,再由(2)的结论解答.【详解】解:(1)t=2时,CD=2×2=4,

∵∠ABC=90°,AB=16,BC=12,∴AD=AC-CD=20-4=16;(2)①∠CDB=90°时,∴解得BD=9.6,∴t=7.2÷2=3.6秒;

②∠CBD=90°时,点D和点A重合,

t=20÷2=10秒,

综上所述,当t=3.6或10秒时,是直角三角形;

(3)如图,过点B作BF⊥AC于F,

由(2)①得:CF=7.2,

∵BD=BC,∴CD=2CF=7.2×2=14.4,

∴t=14.4÷2=7.2,

∴当t=7.2秒时,,【点睛】本题考查了勾股定理,等腰三角形的判定与性质,三角形的面积,熟练掌握相关的知识是解题的关键21、(1)1秒或2秒,(2)存在,32秒或12【解析】试题分析:(1)设经过x秒后,根据△AMN的面积等于矩形ABCD面积的19,得出方程解方程即可;(2)假设经过t秒时,以A,M试题解析:(1)设经过x秒后,△AMN的面积等于矩形ABCD面积的19则有:12(6-2x)x=1解方程,得x1经检验,可知x1=1,x2=2符合题意,所以经过1秒或2秒后,(2)假设经过t秒时,以A,M,由矩形ABCD,可得∠CDA=∠MAN=90因此有AMAN=即t6-2t=3解①,得t=32经检验,t=32或t=125都符合题意,所以动点M,N同时出发后,经过32考点:1.矩形的性质2.相似三角形的判定与性质.22、(1)AM⊥BN,证明见解析;(2)四边形BPEP′是正方形,理由见解析.【解析】

(1)易证△ABM≌△BCN,再根据角度的关系得到∠APB=90°,即可得到AM⊥BN;(2)根据旋转的性质及(1)得到四边形BPEP′是矩形,再根据BP=BP′,得到四边形BPEP′是正方形.【详解】(1)AM⊥BN证明:∵四边形ABCD是正方形,∴AB=BC,∠ABM=∠BCN=90°∵BM=CN,∴△ABM≌△BCN∴∠BAM=∠CBN∵∠CBN+∠ABN=90°,∴∠ABN+∠BAM=90°,∴∠APB=90°∴AM⊥BN.(2)四边形BPEP′是正方形.△A′P′B是△APB绕着点B逆时针旋转90º所得,∴BP=BP′,∠P′BP=90º.又由(1)结论可知∠APB=∠A′P′B=90°,∴∠BP′E=90°.所以四边形BPEP′是矩形.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论