




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.若,,则代数式的值为A.1 B. C. D.62.已知点M(1,a)和点N(2,b)是一次函数y=-2x+1图象上的两点,则a与b的大小关系是()A.a>b B.a=b C.a<b D.以上都不对3.约分的结果是()A. B. C. D.4.下列函数(1)y=πx;(2)y=2x-1;(3);(4)y=x2-1中,是一次函数的有()A.4个 B.3个 C.2个 D.1个5.以下列各组数为边长,不能构成直角三角形的是()A.3,4,5 B.9,12,15 C.,2, D.0.3,0.4,0.56.如图,已知,添加下列条件后,仍不能判定的是()A. B.C. D.7.等腰三角形的一个角为50°,则这个等腰三角形的底角为()A.65° B.65°或80° C.50°或65° D.40°8.使分式xx-1有意义的x的取值范围是A.x=1 B.x≠1 C.x=-1 D.x≠-19.王芳同学周末去新华书店购买资料,右图表示她离家的距离(y)与时间(x)之间的函数图象.若用黑点表示王芳家的位置,则王芳走的路线可能是A. B. C. D.10.已知三角形的三边为2、3、4,该三角形的面积为()A. B. C. D.11.下列方程是关于的一元二次方程的是()A. B. C. D.12.一个射手连续射靶10次,其中3次射中10环,3次射中9环,4次射中8环.则该射手射中环数的中位数和众数分别为()A.8,9 B.9,8 C.8.5,8 D.8.5,9二、填空题(每题4分,共24分)13.已知关于x的方程2x+m=x﹣3的根是正数,则m的取值范围是_____.14.如右图,一只蚂蚁沿着边长为2的正方体表面从点A出发,经过3个面爬到点B,如果它运动的路径是最短的,则此最短路径的长为.15.某种商品的进价为400元,出售时标价为500元,商店准备打折出售,但要保持利润率不低于10%,则至多可以打_____折.16.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若,大正方形的面积为13,则小正方形的面积为________.17.若最简二次根式和是同类二次根式,则m=_____.18.如图,在平面直角坐标系中,点A的坐标为(0,6),将△OAB沿x轴向左平移得到△O′A′B′,点A的对应点A′落在直线y=﹣x上,则点B与其对应点B′间的距离为.三、解答题(共78分)19.(8分)如图,四边形是菱形,对角线,相交于点,且.(1)菱形的周长为;(2)若,求的长.20.(8分)(1)若解关于x的分式方程会产生增根,求m的值.(2)若方程的解是正数,求a的取值范围.21.(8分)小华思考解决如下问题:原题:如图1,点P,Q分别在菱形ABCD的边BC,CD上,∠PAQ=∠B,求证:AP=AQ.(1)小华进行探索,若将点P,Q的位置特殊化:把∠PAQ绕点A旋转得到∠EAF,使AE⊥BC,点E、F分别在边BC、CD上,如图1.此时她证明了AE=AF,请你证明;(1)由以上(1)的启发,在原题中,添加辅助线:如图3,作AE⊥BC,AF⊥CD,垂足分别为E,F.请你继续完成原题的证明;(3)如果在原题中添加条件:AB=4,∠B=60°,如图1,求四边形APCQ的周长的最小值.22.(10分)如图,在边长为1的小正方形组成的网格中,四边形ABCD的四个顶点都在格点上,请按要求完成下列各题:(1)线段AB的长为________,BC的长为________,CD的长为________;(2)连接AC,通过计算说明△ACD和△ABC各是什么特殊三角形.23.(10分)如图,从电线杆离地面5m处向地面拉一条长13m的缆绳,这条缆绳在地面的固定点距离电线杆底部有多远?24.(10分)已知x、y满足方程组,求代数式的值.25.(12分)已知一次函数.(1)若这个函数的图象经过原点,求a的值.(2)若这个函数的图象经过一、三、四象限,求a的取值范围.26.某中学数学兴趣小组为了解本校学生对电视节目的喜爱情况,随机调查了部分学生最喜爱哪一类节目(被调查的学生只选一类并且没有不选择的),并将调查结果制成了如下的两个统计图(不完整).请你根据图中所提供的信息,完成下列问题:(1)本次调查的学生人数为__________,娱乐节目在扇形统计图中所占圆心角的度数是__________度.(2)请将条形统计图补充完整:(3)若该中学有2000名学生,请估计该校喜爱动画节目的人数.
参考答案一、选择题(每题4分,共48分)1、C【解析】
直接提取公因式将原式分解因式,进而将已知数值代入求出答案.【详解】,,.故选:.【点睛】此题主要考查了提取公因式法分解因式,正确分解因式是解题关键.2、A【解析】
∵k=﹣2<0,∴y随x的增大而减小,∵1<2,∴a>b.故选A.3、C【解析】
由题意直接根据分式的基本性质进行约分即可得出答案.【详解】解:=.故选:C.【点睛】本题考查分式约分,熟练掌握分式的约分法则是解答此题的关键.4、C【解析】一次函数解析式形如+b,据此可知(1)y=πx,(2)y=2x-1是一次函数,共有2个,故选C5、C【解析】
通过边判断构成直角三角形必须满足,两短边的平方和=长边的平方.即通过勾股定理的逆定理去判断.【详解】A.,能构成直角三角形B.,构成直角三角形C.,不构成直角三角形D.,构成直角三角形故答案为C【点睛】本题考查了勾股定理的逆定理:如果三角形的的三边满足,那么这个三角形为直角三角形.6、C【解析】
根据全等三角形的判定方法逐项判断即可.【详解】解:在△ABC和△ADC中,已知,AC=AC,A、添加后,可根据SSS判定,所以本选项不符合题意;B、添加后,可根据SAS判定,所以本选项不符合题意;C、添加后,不能判定,所以本选项符合题意;D、添加后,可根据HL判定,所以本选项不符合题意.故选:C.【点睛】本题考查了全等三角形的判定,属于基本题型,熟练掌握全等三角形的判定方法是解题关键.7、C【解析】
已知给出了一个内角是50°,没有明确是顶角还是底角,所以要进行分类讨论,分类后还要用内角和定理去验证每种情况是不是都成立.【详解】当50°是等腰三角形的顶角时,则底角为(180°﹣50°)×12=65当50°是底角时也可以.故选C.【点睛】本题考查了等腰三角形的性质及三角形内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.8、B【解析】
根据分式的意义,由x-1≠0,解答即可【详解】解:根据分式的意义:x∴x≠1故选择:B.【点睛】本题考查了不等式的意义,解题的关键是计算分母不等于0.9、D【解析】分析:由图知:在行驶的过程中,有一段时间小王到家的距离都不变,且最后回到了家,可根据这两个特点来判断符合题意的选项.
详解:由图知:在前往新华书店的过程中,有一段时间小王到家的距离都不变,故可排除B和C,由最后回到了家可排除A,所以只有选项D符合题意;
故选D.
点睛:本题主要考查函数的图象的知识点,重在考查了函数图象的读图能力.能够根据函数的图象准确的把握住关键信息是解答此题的关键.10、D【解析】
如图所示:过点B作BD⊥AC于点D,利用勾股定理得出BD的长,进而利用三角形面积求法得出答案.【详解】如图所示:过点B作BD⊥AC于点D,
设BD=x,CD=y,
则AD=4-y,在Rt△BDC中,x2+y2=32,
在Rt△ABD中,x2+(4-y)2=22,
故9+16-8y=4,解得:y=,
∴x2+()2=9,解得:x=故三角形的面积为:故选:D.【点睛】本题考查勾股定理的应用,根据题意得出三角形的高的值是解题关键.11、C【解析】
根据一元二次方程的定义解答,一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证.【详解】A.中含有4个未知数,所以错误;B.中含有分式,所以错误;C.化简得到,符合一元二次方程的定义,故正确;D.含有两个未知数,所以错误.故选择C.【点睛】本题考查一元二次方程的定义,解题的关键是掌握一元二次方程必须满足四个条件.12、B【解析】
根据中位数和众数的定义求解.把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【详解】解:这组数据中出现次数最多的一个数是8,所以这组数据的众数是8;这10个数按大小顺序排列后中间两个数是1和1,所以这组数据的中位数是1.
故选:B.【点睛】本题考查众数和中位数.掌握中位数和众数的定义是关键.二、填空题(每题4分,共24分)13、m<﹣1【解析】
根据关于x的方程2x+m=x﹣1的根是正数,可以求得m的取值范围.【详解】解:由方程2x+m=x﹣1,得x=﹣m﹣1,∵关于x的方程2x+m=x﹣1的根是正数,∴﹣m﹣1>0,解得,m<﹣1,故答案为:m<﹣1.【点睛】本题考查解一元一次方程和一元一次不等式,解答本题的关键是明确题意,求出m的取值范围.14、【解析】试题分析:如图,将正方体的三个侧面展开,连结AB,则AB最短,.考点:1.最短距离2.正方体的展开图15、1.1.【解析】
设打x折,则售价是500×元.根据利润率不低于10%就可以列出不等式,求出x的范围.【详解】解:要保持利润率不低于10%,设可打x折.
则500×-400≥400×10%,
解得x≥1.1.
故答案是:1.1.【点睛】本题考查一元一次不等式的应用,正确理解利润率的含义,理解利润=进价×利润率,是解题的关键.16、1【解析】
观察图形可知,小正方形的面积=大正方形的面积-4个直角三角形的面积,利用已知,设大正方形的边长为c,大正方形的面积为13,即:,再利用勾股定理得可以得出直角三角形的面积,进而求出答案.【详解】解:如图所示:∵,∴,∵,,∴,∴小正方体的面积=大正方形的面积-4个直角三角形的面积=,故答案为:1.【点睛】此题主要考查了勾股定理的应用,熟练应用勾股定理是解题关键.17、1.【解析】
由最简二次根式的定义可得3m+1=8+2m,解出m即可.【详解】由题意得:3m+1=8+2m,解得:m=1.故答案为1.【点睛】本题主要考查最简二次根式的定义.18、1.【解析】根据题意确定点A/的纵坐标,根据点A/落在直线y=-x上,求出点A/的横坐标,确定△OAB沿x轴向左平移的单位长度即可得到答案.解:由题意可知,点A移动到点A/位置时,纵坐标不变,∴点A/的纵坐标为6,-x=6,解得x=-1,∴△OAB沿x轴向左平移得到△O/A/B/位置,移动了1个单位,∴点B与其对应点B/间的距离为1.故答案为1.“点睛”本题考查的是一次函数图象上点的坐标特征和图形的平移,确定三角形OAB移动的距离是解题的关键.三、解答题(共78分)19、(1)1;(2)AC=【解析】
(1)由菱形的四边相等即可求出其周长;(2)利用勾股定理可求出AO的长,进而解答即可.【详解】解:(1)∵四边形ABCD是菱形,AB=2,∴菱形ABCD的周长为:1;故答案为1.(2)∵四边形ABCD是菱形,BD=2,AB=2,∴AC⊥BD,BO=1,∴AO=,∴AC=2AO=.【点睛】本题主要考查菱形的性质,能够利用勾股定理求出AO的长是解题关键,此题难度一般.20、(1)m=-1或2;(2)a<2且a≠-1【解析】
(1)根据增根是分式方程化为整式方程后产生的使分式方程的分母为0的根,把增根代入化为整式方程的方程即可求出m的值.
(2)先解关于x的分式方程,求得x的值,然后再依据“解是正数”建立不等式求a的取值范围.【详解】解:(1)方程两边都乘(x+2)(x-2),得
2(x+2)+mx=3(x-2)
∵最简公分母为(x+2)(x-2),
∴原方程增根为x=±2,
∴把x=2代入整式方程,得m=-1.
把x=-2代入整式方程,得m=2.
综上,可知m=-1或2.
(2)解:去分母,得2x+a=2-x
解得:x=,∵解为正数,∴>0,∴2-a>0,
∴a<2,且x≠2,
∴a≠-1
∴a<2且a≠-1.【点睛】本题考查了分式方程的增根、分式方程的解、一元一次不等式,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.21、(1)见解析;(1)见解析;(3).【解析】
(1)根据四边形ABCD是菱形,首先证明∠B=∠D,AB=AD,再结合题意证明,进而证明△AEB≌△AFD,即可证明AE=AF.(1)根据(1)的证明,再证明△AEP≌△AFQ(ASA),进而证明AP=AQ.(3)根据题意连接AC,则可证明△ABC为等边三角形,再计算AE的长度,则可计算长APCQ的周长的最小值.【详解】(1)证明:如图1,∵四边形ABCD是菱形,∴∠B+∠C=180°,∠B=∠D,AB=AD,∵∠EAF=∠B,∴∠EAF+∠C=180°,∴∠AEC+∠AFC=180°,∵AE⊥BC,∴AF⊥CD,在△AEB和△AFD中,,∴△AEB≌△AFD(AAS),∴AE=AF;(1)证明:如图3,由(1)得,∠PAQ=∠EAF=∠B,AE=AF,∴∠EAP=∠FAQ,在△AEP和△AFQ中,,∴△AEP≌△AFQ(ASA),∴AP=AQ;(3)解:如图2,连接AC,∵∠ABC=60°,BA=BC=2,∴△ABC为等边三角形,∵AE⊥BC,∴BE=EC=1,同理,CF=FD=1,∴AE==1,∴四边形APCQ的周长=AP+PC+CQ+AQ=1AP+CP+CF+FQ=1AP+1CF,∵CF是定值,当AP最小时,四边形APCQ的周长最小,∴当AP=AE时,四边形APCQ的周长最小,此时四边形APCQ的周长的最小值=1×1+2=2+2.【点睛】本题主要考查菱形的性质,关键在于第三问中的最小值的计算,要使周长最小,当AP=AE时,四边形APCQ的周长最小.22、(1),5,,;(2)直角三角形.【解析】
(1)把线段AB、BC、CD、放在一个直角三角形中利用勾股定理计算即可;(2)根据勾股定理的逆定理求出AC=AD,即可判断△ACD的形状;由勾股定理的逆定理得出△ABC是直角三角形.【详解】解:(1)由勾股定理得AB==,BC==5,CD==2;(2)∵AC==2,AD==2,∴AC=AD,∴△ACD是等腰三角形;∵AB2+AC2=5+20=25=BC2,∴△ABC是直角三角形.【点睛】此题主要考查了勾股定理、勾股定理的逆定理以及等腰三角形的判定;熟练掌握勾股定理是解决问题的关键.23、12m【解析】
根据题意得出在Rt△ABC中,BC=即可求得.【详解】如图所示:由题意可得,AB=5m,AC=13m,在Rt△ABC中,BC==12(m),答:这条缆绳在地面的固定点距离电线杆底部12m.【点睛】要考查了勾股定理的应用,根据题意得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2030中国甲硫氨酸甲磺酰氯行业产业运行态势及投资规划深度研究报告
- 2025至2030中国理发行业深度研究及发展前景投资评估分析
- 成人推拿培训课件
- 学习动力与教学效果的关联性研究
- 企业智慧交通系统解决方案的研究与实践
- 教育行业劳动法规定解读
- 儿童健康教育的全面普及与提高研究
- 企业与政府协作推动的智慧城市治理策略研究
- 教育信息化背景下的教师专业能力提升
- 医疗心理教育与提高医疗服务质量的关系
- 2025年 呼伦贝尔农垦集团公司招聘笔试试卷附答案
- 基础护理学练习题库(含参考答案)
- 内蒙古自治区赤峰市2023-2024学年高二下学期7月期末联考数学试题 含解析
- 2022-2023学年广东省广州市番禺区四年级下学期期末语文真题及答案
- 叶酸培训考试题及答案
- 大庆护理面试题及答案
- 成人用品的购买渠道分析
- 粉店合伙合同协议书范本
- 南京师范大学古代汉语教案
- 马工程西方经济学(精要本第三版)教案
- 引水隧洞工程安全施工方案
评论
0/150
提交评论