2021年辽宁省沈阳市普通高校高职单招数学自考测试卷(含答案)_第1页
2021年辽宁省沈阳市普通高校高职单招数学自考测试卷(含答案)_第2页
2021年辽宁省沈阳市普通高校高职单招数学自考测试卷(含答案)_第3页
2021年辽宁省沈阳市普通高校高职单招数学自考测试卷(含答案)_第4页
2021年辽宁省沈阳市普通高校高职单招数学自考测试卷(含答案)_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021年辽宁省沈阳市普通高校高职单招数学自考测试卷(含答案)学校:________班级:________姓名:________考号:________

一、单选题(20题)1.已知a是第四象限角,sin(5π/2+α)=1/5,那么tanα等于()A.

B.

C.

D.

2.将三名教师排列到两个班任教的安排方案数为()A.5B.6C.8D.9

3.设a,b为实数,则a2=b2的充要条件是()A.a=bB.a=-bC.a2=b2

D.|a|=|b|

4.设i是虚数单位,则复数(1-i)(1+2i)=()A.3+3iB.-1+3iC.3+iD.-1+i

5.设集合,则A与B的关系是()A.

B.

C.

D.

6.A.2B.3C.4D.5

7.某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为()A.1

B.

C.

D.2

8.若一几何体的三视图如图所示,则这个几何体可以是()A.圆柱B.空心圆柱C.圆D.圆锥

9.A.10B.-10C.1D.-1

10.若函数y=log2(x+a)的反函数的图像经过点P(-1,0),则a的值为()A.-2

B.2

C.

D.

11.下列函数为偶函数的是A.

B.

C.

D.

12.“没有公共点”是“两条直线异面”的()A.充分而不必要条件B.充分必要条件C.必要而不充分条件D.既不充分也不必要条件

13.△ABC的内角A,B,C的对边分别为a,b,c已知a=,c=2,cosA=2/3,则b=()A.

B.

C.2

D.3

14.A.x=y

B.x=-y

C.D.

15.已知直线L过点(0,7),且与直线y=-4x+2平行,则直线L的方程为()A.y=-4x-7B.y=4x—7C.y=-4x+7D.y=4x+7

16.椭圆9x2+16y2=144短轴长等于()A.3B.4C.6D.8

17.函数y=Asin(wx+α)的部分图象如图所示,则()A.y=2sin(2x-π/6)

B.y=2sin(2x-π/3)

C.y=2sin(x+π/6)

D.y=2sin(x+π/3)

18.已知sin2α<0,且cosa>0,则α的终边在()A.第一象限B.第二象限C.第三象限D.第四象限

19.若x2-ax+b<0的解集为(1,2),则a+b=()A.5B.-5C.1D.-1

20.若函数f(x-)=x2+,则f(x+1)等于()A.(x+1)2+

B.(x-)2+

C.(x+1)2+2

D.(x+1)2+1

二、填空题(20题)21.已知一个正四棱柱的底面积为16,高为3,则该正四棱柱外接球的表面积为_____.

22.

23.正方体ABCD-A1B1C1D1中AC与AC1所成角的正弦值为

24.

25.函数的最小正周期T=_____.

26.算式的值是_____.

27.已知等差数列{an}的公差是正数,且a3·a7=-12,a4+a6=-4,则S20=_____.

28.

29.若事件A与事件ā互为对立事件,且P(ā)=P(A),则P(ā)=

30.在△ABC中,若acosA=bcosB,则△ABC是

三角形。

31.集合A={1,2,3}的子集的个数是

32.函数f(x)=-X3+mx2+1(m≠0)在(0,2)内的极大值为最大值,则m的取值范围是________________.

33.

34.以点(1,0)为圆心,4为半径的圆的方程为_____.

35.设A=(-2,3),b=(-4,2),则|a-b|=

36.椭圆9x2+16y2=144的短轴长等于

37.若一个球的体积为则它的表面积为______.

38.

39.

40.

三、计算题(5题)41.甲、乙两人进行投篮训练,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且两人投球命中与否相互之间没有影响.(1)若两人各投球1次,求恰有1人命中的概率;(2)若两人各投球2次,求这4次投球中至少有1次命中的概率.

42.己知直线l与直线y=2x+5平行,且直线l过点(3,2).(1)求直线l的方程;(2)求直线l在y轴上的截距.

43.有语文书3本,数学书4本,英语书5本,书都各不相同,要把这些书随机排在书架上.(1)求三种书各自都必须排在一起的排法有多少种?(2)求英语书不挨着排的概率P。

44.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1)试估计“可回收垃圾”投放正确的概率;(2)试估计生活垃圾投放错误的概率。

45.在等差数列{an}中,前n项和为Sn

,且S4

=-62,S6=-75,求等差数列{an}的通项公式an.

四、简答题(5题)46.平行四边形ABCD中,CBD沿对角线BD折起到平面CBD丄平面ABD,求证:AB丄DE。

47.化简a2sin(-1350°)+b2tan405°-(a-b)2cot765°-2abcos(-1080°)

48.证明上是增函数

49.计算

50.简化

五、解答题(5题)51.某学校高二年级一个学习兴趣小组进行社会实践活动,决定对某“著名品牌”A系列进行市场销售量调研,通过对该品牌的A系列一个阶段的调研得知,发现A系列每日的销售量f(x)(单位:千克)与销售价格x(元/千克)近似满足关系式f(x)=a/x-4+10(1-7)2其中4<x<7,a为常数.已知销售价格为6元/千克时,每日可售出A系列15千克.(1)求函数f(x)的解析式;(2)若A系列的成本为4元/千克,试确定销售价格x的值,使该商场每日销售A系列所获得的利润最大.

52.成等差数列的三个正数的和等于15,并且这三个数分别加上2,5,13后成为等比数列{bn}中的b3,b4,b5(1)求数列{bn}的通项公式;(2)数列{bn}的前n项和为Sn,求证:数列{Sn+5/4}是等比数列

53.如图,在四棱锥P-ABCD中,底面是正方形,PD⊥平面ABCD,且PD=AD.(1)求证:PA⊥CD;(2)求异面直线PA与BC所成角的大小.

54.

55.

六、证明题(2题)56.己知直线l:x+y+4=0且圆心为(1,-1)的圆C与直线l相切。证明:圆C的标准方程为(x-1)2

+(y+1)2

=8.

57.

参考答案

1.B三角函数的诱导公式化简sin(5π/2+α)=sin(2π+π/2+α)=sin(π/2+α)=cosα=1/5,因α是第四象限角,所以sinα

2.B

3.D

4.C复数的运算.(1-i)(1+2i)=1+2i-i-2i2=1+i+2=3+i,

5.A

6.D向量的运算.因为四边形ABCD是平行四边形,

7.C四棱锥的直观图.四棱锥的直观图如图所示,PC⊥平面ABCD,PC=1,底面四边形ABCD为正方形且边长为1,最长棱长

8.B几何体的三视图.由三视图可知该几何体为空心圆柱

9.C

10.D

11.A

12.C

13.D解三角形的余弦定理.由余弦定理,得5=b2+22-2×b×2×2/3,解得b=3(b=1/3舍去),

14.D

15.C直线的点斜式方程∵直线l与直线y=-4x+2平行,∴直线l的斜率为-4,又直线l过点(0,7),∴直线l的方程为y-7=-4(x-0),即y=-4x+7.

16.C

17.A三角函数图像的性质.由题图可知,T=2[π/3-(-π/6)]=π,所以ω=2,由五点作图法可知2×π/3+α=π/2,所以α=-π/6所以函数的解析式为y=2sin(2x-π/6)

18.D三角函数值的符号∵sin2α=2sinα.cosα<0,又cosα>0,∴sinα<0,∴α的终边在第四象限,

19.A一元二次不等式与一元二次方程的应用,根与系数的关系的应用问题.即方程x2-ax+b=0的两根为1,2.由根与系数关系得解得a=3.所以a+b=5.

20.C由题可知,f(0)=2=f(-1+1),因此x=-1时,函数值为2,所以正确答案为C。

21.41π,由题可知,底面边长为4,底面对角线为,外接球的直径即由高和底面对角线组成的矩形的对角线,所以外接球的直径为,外接球的表面积为。

22.

23.

,由于CC1=1,AC1=,所以角AC1C的正弦值为。

24.λ=1,μ=4

25.

,由题可知,所以周期T=

26.11,因为,所以值为11。

27.180,

28.-1

29.0.5由于两个事件是对立事件,因此两者的概率之和为1,又两个事件的概率相等,因此概率均为0.5.

30.等腰或者直角三角形,

31.8

32.(0,3).利用导数求函数的极值,最值.f(x)=-3x2+2mx=x(-3x+2m).令f(x)=0,得x=0或x=2m/3因为x∈(0,2),所以0<2m/3<2,0<m<3.答案:(0,3).

33.{-1,0,1,2}

34.(x-1)2+y2=16圆的方程.当圆心坐标为(x0,y0)时,圆的-般方程为(x-x0)+(y-y0)=r2.所以,(x-1)2+y2=16

35.

。a-b=(2,1),所以|a-b|=

36.

37.12π球的体积,表面积公式.

38.(-7,±2)

39.-16

40.5

41.

42.解:(1)设所求直线l的方程为:2x-y+c=0∵直线l过点(3,2)∴6-2+c=0即c=-4∴所求直线l的方程为:2x-y-4=0(2)∵当x=0时,y=-4∴直线l在y轴上的截距为-4

43.

44.

45.解:设首项为a1、公差为d,依题意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23

46.

47.原式=

48.证明:任取且x1<x2∴即∴在是增函数

49.

50.

51.(1)由题意可知,当x=6时,f(x)=15,即a/2+10=15,解得a=10,所以f(x)=10f(x-4)++10(x-7)2.(2)设该商场每日销售A系列所获得的利润为h(x),h(x)=(x-4)[10/x-4+10(x-7)2]=10x3-180x2+1050x-1950(4<x<7),h(x)=30x2-360x+1050,令h(x)=30x2-360x+1050=0,得x=5或x=7(舍去),所以当4<x<5时,h(x)>0,h(x)在(4,5]为增函数;当5<x<7,h(x)<0,h(x)在[5,7)为减函数,故当x=5时,函数h(x)在区间(4,7)内有极大值点,也是最大值点,即x=5时函数h(x)取得最大值50.所以当销售价格为5元/千克时,A系列每日所获得的利润最大.

52.(1)设成等差数列的三个正数分别为a-d,a,a+d依题意,得a-d+a+a+d=15,解得a=5,所以{bn}中的,b3,b4,b5依次为7-d,10,18+d依题意,有(7-d)(18+d)=100,解得d=2或d=-13,又因为成等差数列的三个数为正数,所以d=2.故{bn}的第3项为5,公比为2;由b3=b1×22,即5=b1×22

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论