




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年中考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()A. B.8 C. D.2.如图,△ABC中,AD⊥BC,AB=AC,∠BAD=30°,且AD=AE,则∠EDC等于()A.10° B.12.5° C.15° D.20°3.如图,是直角三角形,,,点在反比例函数的图象上.若点在反比例函数的图象上,则的值为()A.2 B.-2 C.4 D.-44.下列计算正确的是A.a2·a2=2a4B.(-a2)3=-a6C.3a2-6a2=3a2D.(a-2)2=a2-45.如图,某地修建高速公路,要从A地向B地修一条隧道(点A、B在同一水平面上).为了测量A、B两地之间的距离,一架直升飞机从A地出发,垂直上升800米到达C处,在C处观察B地的俯角为α,则A、B两地之间的距离为()A.800sinα米 B.800tanα米 C.米 D.米6.如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…,按照此规律继续下去,则S9的值为()A.()6 B.()7 C.()6 D.()77.下列几何体中,俯视图为三角形的是()A. B. C. D.8.实数的相反数是()A.- B. C. D.9.已知x1、x2是关于x的方程x2﹣ax﹣2=0的两根,下列结论一定正确的是()A.x1≠x2 B.x1+x2>0 C.x1•x2>0 D.x1<0,x2<010.下列各运算中,计算正确的是()A.a12÷a3=a4 B.(3a2)3=9a6C.(a﹣b)2=a2﹣ab+b2 D.2a•3a=6a2二、填空题(共7小题,每小题3分,满分21分)11.在平面直角坐标系中,点A,B的坐标分别为(m,7),(3m﹣1,7),若线段AB与直线y=﹣2x﹣1相交,则m的取值范围为__.12.如图,a∥b,∠1=110°,∠3=40°,则∠2=_____°.13.如果一个三角形有一条边上的高等于这条边的一半,那么我们把这个三角形叫做半高三角形.已知直角三角形ABC是半高三角形,且斜边AB=5,则它的周长等于_____.14.如图是一本折扇,其中平面图是一个扇形,扇面ABDC的宽度AC是管柄长OA的一半,已知OA=30cm,∠AOB=120°,则扇面ABDC的周长为_____cm15.已知a、b是方程x2﹣2x﹣1=0的两个根,则a2﹣a+b的值是_______.16.已知:如图,△ABC内接于⊙O,且半径OC⊥AB,点D在半径OB的延长线上,且∠A=∠BCD=30°,AC=2,则由,线段CD和线段BD所围成图形的阴影部分的面积为__.17.关于的一元二次方程有两个不相等的实数根,请你写出一个满足条件的值__________.三、解答题(共7小题,满分69分)18.(10分)已知二次函数.(1)该二次函数图象的对称轴是;(2)若该二次函数的图象开口向上,当时,函数图象的最高点为,最低点为,点的纵坐标为,求点和点的坐标;(3)对于该二次函数图象上的两点,,设,当时,均有,请结合图象,直接写出的取值范围.19.(5分)计算:﹣4cos45°+()﹣1+|﹣2|.20.(8分)如图,在四边形ABCD中,∠ABC=90°,AB=3,BC=4,CD=10,DA=5,求BD的长.21.(10分)定义:任意两个数a,b,按规则c=b2+ab﹣a+7扩充得到一个新数c,称所得的新数c为“如意数”.若a=2,b=﹣1,直接写出a,b的“如意数”c;如果a=3+m,b=m﹣2,试说明“如意数”c为非负数.22.(10分)已知关于的方程有两个实数根.求的取值范围;若,求的值;23.(12分)计算:解不等式组,并写出它的所有整数解.24.(14分)某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】∵⊙O的半径OD⊥弦AB于点C,AB=8,∴AC=AB=1.设⊙O的半径为r,则OC=r-2,在Rt△AOC中,∵AC=1,OC=r-2,∴OA2=AC2+OC2,即r2=12+(r﹣2)2,解得r=2.∴AE=2r=3.连接BE,∵AE是⊙O的直径,∴∠ABE=90°.在Rt△ABE中,∵AE=3,AB=8,∴.在Rt△BCE中,∵BE=6,BC=1,∴.故选D.2、C【解析】试题分析:根据三角形的三线合一可求得∠DAC及∠ADE的度数,根据∠EDC=90°-∠ADE即可得到答案.∵△ABC中,AD⊥BC,AB=AC,∠BAD=30°,∴∠DAC=∠BAD=30°,∵AD=AE(已知),∴∠ADE=75°∴∠EDC=90°-∠ADE=15°.故选C.考点:本题主要考查了等腰三角形的性质,三角形内角和定理点评:解答本题的关键是掌握等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.3、D【解析】
要求函数的解析式只要求出点的坐标就可以,过点、作轴,轴,分别于、,根据条件得到,得到:,然后用待定系数法即可.【详解】过点、作轴,轴,分别于、,设点的坐标是,则,,,,,,,,,,,,因为点在反比例函数的图象上,则,点在反比例函数的图象上,点的坐标是,.故选:.【点睛】本题考查了反比例函数图象上点的坐标特征,相似三角形的判定与性质,求函数的解析式的问题,一般要转化为求点的坐标的问题,求出图象上点的横纵坐标的积就可以求出反比例函数的解析式.4、B【解析】【分析】根据同底数幂乘法、幂的乘方、合并同类项法则、完全平方公式逐项进行计算即可得.【详解】A.a2·a2=a4,故A选项错误;B.(-a2)3=-a6,正确;C.3a2-6a2=-3a2,故C选项错误;D.(a-2)2=a2-4a+4,故D选项错误,故选B.【点睛】本题考查了同底数幂的乘法、幂的乘方、合并同类项、完全平方公式,熟练掌握各运算的运算法则是解题的关键.5、D【解析】【分析】在Rt△ABC中,∠CAB=90°,∠B=α,AC=800米,根据tanα=,即可解决问题.【详解】在Rt△ABC中,∵∠CAB=90°,∠B=α,AC=800米,∴tanα=,∴AB=,故选D.【点睛】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是熟练掌握基本知识,属于中考常考题型.6、A【解析】试题分析:如图所示.∵正方形ABCD的边长为2,△CDE为等腰直角三角形,∴DE2+CE2=CD2,DE=CE,∴S2+S2=S1.观察发现规律:S1=22=4,S2=S1=2,S2=S2=1,S4=S2=,…,由此可得Sn=()n﹣2.当n=9时,S9=()9﹣2=()6,故选A.考点:勾股定理.7、C【解析】
俯视图是从上面所看到的图形,可根据各几何体的特点进行判断.【详解】A.圆锥的俯视图是圆,中间有一点,故本选项不符合题意,B.几何体的俯视图是长方形,故本选项不符合题意,C.三棱柱的俯视图是三角形,故本选项符合题意,D.圆台的俯视图是圆环,故本选项不符合题意,故选C.【点睛】此题主要考查了由几何体判断三视图,正确把握观察角度是解题关键.8、A【解析】
根据相反数的定义即可判断.【详解】实数的相反数是-故选A.【点睛】此题主要考查相反数的定义,解题的关键是熟知相反数的定义即可求解.9、A【解析】分析:A、根据方程的系数结合根的判别式,可得出△>0,由此即可得出x1≠x2,结论A正确;B、根据根与系数的关系可得出x1+x2=a,结合a的值不确定,可得出B结论不一定正确;C、根据根与系数的关系可得出x1•x2=﹣2,结论C错误;D、由x1•x2=﹣2,可得出x1<0,x2>0,结论D错误.综上即可得出结论.详解:A∵△=(﹣a)2﹣4×1×(﹣2)=a2+8>0,∴x1≠x2,结论A正确;B、∵x1、x2是关于x的方程x2﹣ax﹣2=0的两根,∴x1+x2=a,∵a的值不确定,∴B结论不一定正确;C、∵x1、x2是关于x的方程x2﹣ax﹣2=0的两根,∴x1•x2=﹣2,结论C错误;D、∵x1•x2=﹣2,∴x1<0,x2>0,结论D错误.故选A.点睛:本题考查了根的判别式以及根与系数的关系,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.10、D【解析】【分析】根据同底数幂的除法、积的乘方、完全平方公式、单项式乘法的法则逐项计算即可得.【详解】A、原式=a9,故A选项错误,不符合题意;B、原式=27a6,故B选项错误,不符合题意;C、原式=a2﹣2ab+b2,故C选项错误,不符合题意;D、原式=6a2,故D选项正确,符合题意,故选D.【点睛】本题考查了同底数幂的除法、积的乘方、完全平方公式、单项式乘法等运算,熟练掌握各运算的运算法则是解本题的关键.二、填空题(共7小题,每小题3分,满分21分)11、﹣4≤m≤﹣1【解析】
先求出直线y=7与直线y=﹣2x﹣1的交点为(﹣4,7),再分类讨论:当点B在点A的右侧,则m≤﹣4≤3m﹣1,当点B在点A的左侧,则3m﹣1≤﹣4≤m,然后分别解关于m的不等式组即可.【详解】解:当y=7时,﹣2x﹣1=7,解得x=﹣4,所以直线y=7与直线y=﹣2x﹣1的交点为(﹣4,7),当点B在点A的右侧,则m≤﹣4≤3m﹣1,无解;当点B在点A的左侧,则3m﹣1≤﹣4≤m,解得﹣4≤m≤﹣1,所以m的取值范围为﹣4≤m≤﹣1,故答案为﹣4≤m≤﹣1.【点睛】本题考查了一次函数图象上点的坐标特征,根据直线y=﹣2x﹣1与线段AB有公共点找出关于m的一元一次不等式组是解题的关键.12、1【解析】试题解析:如图,∵a∥b,∠3=40°,∴∠4=∠3=40°.∵∠1=∠2+∠4=110°,∴∠2=110°-∠4=110°-40°=1°.故答案为:1.13、5+3或5+5.【解析】
分两种情况讨论:①Rt△ABC中,CD⊥AB,CD=AB=;②Rt△ABC中,AC=BC,分别依据勾股定理和三角形的面积公式,即可得到该三角形的周长为5+3或5+5.【详解】由题意可知,存在以下两种情况:(1)当一条直角边是另一条直角边的一半时,这个直角三角形是半高三角形,此时设较短的直角边为a,则较长的直角边为2a,由勾股定理可得:,解得:,∴此时较短的直角边为,较长的直角边为,∴此时直角三角形的周长为:;(2)当斜边上的高是斜边的一半是,这个直角三角形是半高三角形,此时设两直角边分别为x、y,这有题意可得:①,②S△=,∴③,由①+③得:,即,∴,∴此时这个直角三角形的周长为:.综上所述,这个半高直角三角形的周长为:或.故答案为或.【点睛】(1)读懂题意,弄清“半高三角形”的含义是解题的基础;(2)根据题意,若直角三角形是“半高三角形”,则存在两种情况:①一条直角边是另一条直角边的一半;②斜边上的高是斜边的一半;解题时这两种情况都要讨论,不要忽略了其中一种.14、1π+1.【解析】分析:根据题意求出OC,根据弧长公式分别求出AB、CD的弧长,根据扇形周长公式计算.详解:由题意得,OC=AC=OA=15,的长==20π,的长==10π,∴扇面ABDC的周长=20π+10π+15+15=1π+1(cm),故答案为1π+1.点睛:本题考查的是弧长的计算,掌握弧长公式:是解题的关键.15、1【解析】
根据一元二次方程的解及根与系数的关系,可得出a2-2a=1、a+b=2,将其代入a2-a+b中即可求出结论.【详解】∵a、b是方程x2-2x-1=0的两个根,∴a2-2a=1,a+b=2,∴a2-a+b=a2-2a+(a+b)=1+2=1.故答案为1.【点睛】本题考查根与系数的关系以及一元二次方程的解,牢记两根之和等于-、两根之积等于是解题的关键.16、2﹣π.【解析】试题分析:根据题意可得:∠O=2∠A=60°,则△OBC为等边三角形,根据∠BCD=30°可得:∠OCD=90°,OC=AC=2,则CD=,,则.17、1【解析】
先根据根的判别式求出c的取值范围,然后在范围内随便取一个值即可.【详解】解得所以可以取故答案为:1.【点睛】本题主要考查根的判别式,掌握根的判别式与根个数的关系是解题的关键.三、解答题(共7小题,满分69分)18、(1)x=1;(2),;(3)【解析】
(1)二次函数的对称轴为直线x=-,带入即可求出对称轴,(2)在区间内发现能够取到函数的最低点,即为顶点坐标,当开口向上是,距离对称轴越远,函数值越大,所以当x=5时,函数有最大值.(3)分类讨论,当二次函数开口向上时不满足条件,所以函数图像开口只能向下,且应该介于-1和3之间,才会使,解不等式组即可.【详解】(1)该二次函数图象的对称轴是直线;(2)∵该二次函数的图象开口向上,对称轴为直线,,∴当时,的值最大,即.把代入,解得.∴该二次函数的表达式为.当时,,∴.(3)易知a0,∵当时,均有,∴,解得∴的取值范围.【点睛】本题考查了二次函数的对称轴,定区间内求函数值域,以及二次函数图像的性质,难度较大,综合性强,熟悉二次函数的单调性是解题关键.19、4【解析】分析:代入45°角的余弦函数值,结合“负整数指数幂的意义”和“二次根式的相关运算法则”进行计算即可.详解:原式=.点睛:熟记“特殊角的三角函数值、负整数指数幂的意义:(为正整数)”是正确解答本题的关键.20、BD=2.【解析】
作DM⊥BC,交BC延长线于M,连接AC,由勾股定理得出AC2=AB2+BC2=25,求出AC2+CD2=AD2,由勾股定理的逆定理得出△ACD是直角三角形,∠ACD=90°,证出∠ACB=∠CDM,得出△ABC∽△CMD,由相似三角形的对应边成比例求出CM=2AB=6,DM=2BC=8,得出BM=BC+CM=10,再由勾股定理求出BD即可.【详解】作DM⊥BC,交BC延长线于M,连接AC,如图所示:则∠M=90°,∴∠DCM+∠CDM=90°,∵∠ABC=90°,AB=3,BC=4,∴AC2=AB2+BC2=25,∵CD=10,AD=,∴AC2+CD2=AD2,∴△ACD是直角三角形,∠ACD=90°,∴∠ACB+∠DCM=90°,∴∠ACB=∠CDM,∵∠ABC=∠M=90°,∴△ABC∽△CMD,∴,∴CM=2AB=6,DM=2BC=8,∴BM=BC+CM=10,∴BD===,【点睛】本题考查了相似三角形的判定与性质、勾股定理、勾股定理的逆定理;熟练掌握相似三角形的判定与性质,证明由勾股定理的逆定理证出△ACD是直角三角形是解决问题的关键.21、(1)4;(2)详见解析.【解析】
(1)本题是一道自定义运算题型,根据题中给的如意数的概念,代入即可得出结果(2)根据如意数的定义,求出代数式,分析取值范围即可.【详解】解:(1)∵a=2,b=﹣1∴c=b2+ab﹣a+7=1+(﹣2)﹣2+7=4(2)∵a=3+m,b=m﹣2∴c=b2+ab﹣a+7=(m﹣2)2+(3+m)(m﹣2)﹣(3+m)+7=2m2﹣4m+2=2(m﹣1)2∵(m﹣1)2≥0∴“如意数”c为非负数【点睛】本题考查了因式分解,完全平方式(m﹣1)2的非负性,难度不大.22、(1);(2)k=-3【解析】
(1)依题意得△≥0,即[-2(k-1)]2-4k2≥0;(2)依题意x1+x2=2(k-1),x1·x2=k2以下分两种情况讨论:①当x1+x2≥0时,则有x1+x2=x1·x2-1,即2(k-1)=k2-1;②当x1+x2<0时,则有x1+x2=-(x1·x2-1),即2(k-1)=-(k2-1);【详解】解:(1)依题意得△≥0,即[-2(k-1)]2-4k2≥0解得(2)依题意x1+x2=2(k-1),x1·x2=k2以下分两种情况讨论:①当x1+x2≥0时,则有x1+x2=x1·x2-1,即2(k-1)=k2-1解得k1=k2=1∵∴k1=k2=1不合题意,舍去②当x1+x2<0时,则有x1+x2=-(x1·x2-1),即2(k-1)=-(k2-1)解得k1=1,k2=-3∵∴k=-3综合①、②可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 协议书房可以贷款
- 员工保密协议书可以
- 手动液压车施工方案
- 协议书存款和协定存款
- 福建电饭煲设计研发方案咨询
- 3.1 天气 教学设计-七年级地理上学期仁爱科普版
- 2025-2030企业合规法律服务市场需求增长预测
- 与plc通信协议书
- 2025-2030人工智能辅助医疗诊断系统检测规范研究
- 2025-2030亲子共读对幼儿语言神经通路形成的实证研究及出版业机遇
- 2024年高等教育文学类自考-00504艺术概论考试近5年真题附答案
- 课件:《中华民族共同体概论》第十五讲:新时代与中华民族共同体建设
- 物业进场方案
- 物理原理在土木工程中的教学设计方案
- 网络安全意识培训
- 中医内科学:疾病辨证与中药治疗
- 滇西三部曲:松山战役笔记
- 保险学(第五版)课件 附章:社会保险
- GB 5009.12-2023食品安全国家标准食品中铅的测定
- 年度人才盘点报告1
- 百词斩雅思核心词汇
评论
0/150
提交评论