




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年中考数学二轮复习《函数的实际应用》中档题练习一 、选择题1.某种气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P(kPa)是气体体积V(m3)的反比例函数,其图象如图所示,当气球内气体的气压大于150kPa时,气球将爆炸.为了安全,气体体积V应该是()A.小于0.64m3B.大于0.64m3C.不小于0.64m3D.不大于0.64m32.今年3月,市路桥公司决定对A、B两地之间的公路进行改造,并由甲工程队从A地向B地方向修筑,乙工程队从B地向A第方向修筑.已知甲工程队先施工2天,乙工程队再开始施工,乙工程队施工几天后因另有任务提前离开,余下的任务由甲工程队单独完成,直到公路修通.甲、乙两个工程队修公路的长度y(米)与施工时间x(天)之间的函数关系如图所示.下列说法:①乙工程队每天修公路160米;②甲工程队每天修公路120米;③甲比乙多工作6天;④A、B两地之间的公路总长是1200米.其中正确的说法有()A.4个 B.3个 C.2个 D.1个3.教室里的饮水机接通电源就进入自动程序:开机加热时每分钟上升10℃,加热到100℃后停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系,直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y(℃)和时间x(min)的关系如图,为了在上午第一节下课时(8:45)能喝到不超过50℃的水,则接通电源的时间可以是当天上午的()A.7:20B.7:30C.7:45D.7:504.甲骑摩托车从A地去B地,乙开汽车从B地去A地,同时出发,匀速行驶,各自到达终点后停止,设甲、乙两人间距离为s(单位:千米),甲行驶的时间为t(单位:小时),s与t之间的函数关系如图所示,有下列结论:①出发1小时时,甲、乙在途中相遇;②出发1.5小时时,乙比甲多行驶了60千米;③出发3小时时,甲、乙同时到达终点;④甲的速度是乙速度的一半.其中,正确结论的个数是()A.4
B.3
C.2
D.15.甲、乙二人从学校出发去科技馆,甲步行一段时间后,乙骑自行车沿相同路线行进,两人均匀速前行,他们的路程差s(米)与甲出发时间t(分)之间的函数关系如图所示.下列说法:①乙先到达青少年宫;②乙的速度是甲速度的2.5倍;③b=480;④a=24.其中正确的是()A.①②③B.①②④C.①③④D.①②③④6.某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18℃的条件下生长最快的新品种.如图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(℃)随时间x(h)变化的函数图象,其中BC段是双曲线y=eq\f(k,x)(k≠0)的一部分,则当x=16时,大棚内的温度约为()A.18℃B.15.5℃C.13.5℃D.12℃7.烟花厂为春节特别设计了一种新型礼炮,这种礼炮的升空高度h(m)关于飞行时间t(s)的函数表达式为h=-1.5t2+12t+30.若这种礼炮在上升到最高点引爆,则从点火升空到引爆需要的时间为().A.3sB.4sC.5sD.6s8.在1-7月份,某地的蔬菜批发市场指导菜农生产和销售某种蔬菜,并向他们提供了这种蔬菜每千克售价与每千克成本的信息如图所示,则出售该种蔬菜每千克利润最大的月份可能是().A.1月份B.2月份C.5月份D.7月份9.某商家销售某种商品,当单价为10元时,每天能卖出200个.现在采用提高售价方法来增加利润,已知商品单价每上涨1元,每天销售量就少10个,则每天销售金额最大为()A.2500元B.2250元C.2160元D.2000元10.图2是图1中拱形大桥的示意图,桥拱与桥面的交点为O,B,以点O为原点,水平直线OB为x轴,建立平面直角坐标系,桥的拱形可近似看成抛物线y=-(x-80)2+16,桥拱与桥墩AC的交点C恰好在水面,有AC⊥x轴,若OA=10米,则桥面离水面的高度AC为()A.16米B.eq\f(17,4)米C.16米D.eq\f(15,4)米11.太阳影子定位技术是通过分析视频中物体的太阳影子变化,确定视频拍摄地点的一种方法.为了确定视频拍摄地的经度,我们需要对比视频中影子最短的时刻与同一天东经120度影子最短的时刻.在一定条件下,直杆的太阳影子长度l(单位:米)与时刻t(单位:时)的关系满足函数关系式l=at2+bt+c(a,b,c是常数),如图记录了三个时刻的数据,根据上述函数模型和记录的数据,则该地影子最短时,最接近的时刻t是()A.12.75B.13C.13.33D.13.512.某地要建造一个圆形喷水池,在水池中央垂直于地面安装一个柱子OA,O恰为水面中心,安置在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下.在过OA的任一平面上,建立平面直角坐标系(如图),水流喷出的高度y(m)与水平距离x(m)之间的关系式是y=-x2+2x+eq\f(5,4).则下列结论:(1)柱子OA的高度为eq\f(5,4)m;(2)喷出的水流距柱子1m处达到最大高度;(3)喷出的水流距水平面的最大高度是eq\f(5,2)m;(4)水池的半径至少要eq\f(5,2)m才能使喷出的水流不至于落在水池外.其中正确的有()A.1个B.2个C.3个D.4个二 、填空题13.如图,一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y(单位:升)与时间x(单位:分)之间的部分关系.那么从关闭进水管起
分钟该容器内的水恰好放完.14.为预防“手足口病”,某学校对教室进行“药熏消毒”.消毒期间,室内每立方米空气中的含药量y(mg)与时间x(分)的函数关系如图所示.已知药物燃烧阶段,y与x成正比例,燃烧完后,y与x成反比例.现测得药物10分钟燃烧完,此时教室内每立方米空气的含药量为8mg.当每立方米空气中的含药量低于1.6mg时,对人体才能无毒害作用.那么从消毒开始,经过________分钟后教室内的空气才能达到安全要求.15.飞机着陆后滑行的距离y(单位:m)关于滑行的时间x(单位:s)的函数解析式是y=-1.2x2+48x,则飞机着陆后滑行________m后才能停下来16.游乐场投资150万元引进一项大型游乐设施,若不计维修保养费用,预计开放后每月可创收33万元,而该游乐设施开放后,从第1个月到第x个月的维修保养费用累计为y(单位:万元),且y=ax2+bx,若维修保养费用第1个月为2万元,第2个月为4万元;若将创收扣除投资和维修保养费用称为游乐场的纯收益g(单位:万元),g也是关于x的二次函数.(1)y关于x的解析式;(2)纯收益g关于x的解析式;(3)设施开放个月后,游乐场纯收益达到最大?个月后,能收回投资?17.如图,某小区准备用篱笆围成一块矩形花圃ABCD,为了节省篱笆,一边利用足够长的墙,另外三边用篱笆围着,再用两段篱笆EF与GH将矩形ABCD分割成①②③三块矩形区域,而且这三块矩形区域的面积相等,现有总长80m的篱笆,当围成的花圃ABCD的面积最大时,AB的长为m.
18.如图,一大桥有一段抛物线型的拱梁,抛物线的表达式为y=ax2+bx+c,小王骑自行车从O匀速沿直线到拱梁一端A,再匀速通过拱梁部分的桥面AC,小王从O到A用了2秒,当小王骑自行车行驶10秒时和20秒时拱梁的高度相同,则小强骑自行车通过拱梁部分的桥面AC共需秒.三 、解答题19.某市政府计划在总费用2300元的限额内,租用汽车送234名运动员和6名教练参加青少年运动会,每辆汽车上至少要有1名教练.现有甲、乙两种大客车,它们的载客量和租金如下表:甲种客车乙种客车载客量/(人/辆)4530租金/(元/辆)400280(1)共需租多少辆汽车?(2)有几种租车方案?(3)最节省费用的是哪种租车方案?20.如图①所示,正方形ABCD的边长为6cm,动点P从点A出发,在正方形的边上沿A→B→C→D运动,设运动的时间为t(s),三角形APD的面积为S(cm2),S与t的函数图象如图②所示,请回答下列问题:(1)点P在AB上运动的时间为________s,在CD上运动的速度为________cm/s,三角形APD的面积S的最大值为________cm2;(2)求出点P在CD上运动时S与t之间的函数解析式;(3)当t为何值时,三角形APD的面积为10cm2?21.试验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y(毫克/百毫升)与时间x(时)的关系可近似地用二次函数y=-200x2+400x刻画;1.5小时后(包括1.5小时)y与x可近似地用反比例函数y=eq\f(k,x)(k>0)刻画(如图26-Y-6所示).(1)根据上述数学模型计算:①喝酒后几时血液中的酒精含量达到最大值?最大值为多少?②当x=5时,y=45,求k的值.(2)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否驾车去上班?请说明理由.22.某快餐店试销某种套餐,每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本).试销一段时间后发现,若每份套餐售价不超过10元,每天可销售400份;若每份套餐售价超过10元,每提高1元,每天的销售量就减少40份.为了便于结算,每份套餐的售价x(元)取整数,用y(元)表示该店每天的利润.(1)若每份套餐售价不超过10元.①试写出y与x的函数关系式;②若要使该店每天的利润不少于800元,则每份套餐的售价应为多少元?(2)该店把每份套餐的售价提高到10元以上,每天的利润能否达到1560元?若不能,请说明理由;若能,求出每份套餐的售价应定为多少元时,既能保证利润又能吸引顾客?23.某公司生产的某种产品每件成本为40元,经市场调查整理出如下信息:①该产品90天售量(n件)与时间(第x天)满足一次函数关系,部分数据如下表:时间(第x天)12310…日销售量(n件)198196194?…②该产品90天内每天的销售价格与时间(第x天)的关系如下表:时间(第x天)1≤x<5050≤x≤90销售价格(元/件)x+60100(1)求出第10天日销售量;(2)设销售该产品每天利润为y元,请写出y关于x的函数表达式,并求出在90天内该产品的销售利润最大?最大利润是多少?【提示:每天销售利润=日销售量×(每件销售价格﹣每件成本)】(3)在该产品销售的过程中,共有多少天销售利润不低于5400元,请直接写出结果.
答案1.C2.C3.A4.B.5.A6.C7.B.8.C9.B.10.B11.C.12.C.13.答案为:8.14.答案为:5015.答案为:480;16.答案为:(1)y=x2+x;
(2)纯收益g=33x-150-(x2+x)=-x2+32x-150
(3)g=-x2+32x-150=-(x-16)2+106,17.答案为:1518.答案为:26.19.解:(1)由每辆汽车上至少要有1名老师,汽车总数不能大于6辆;又要保证240名师生有车坐且汽车总数不能小于240/45(取整为6)辆,综合起来可知汽车总数为6辆.(2)设租用m辆甲种客车,则租车费用Q(单位:元)是m的函数,即Q=400m+280(6﹣m);化简为:Q=120m+1680,依题意有:120m+1680≤2300,∴m≤31/6,即m≤5又要保证240名师生有车坐,m不小于4,所以有两种租车方案:方案一:4辆甲种客车,2辆乙种客车;方案二:5辆甲种客车,1辆乙种客车.(3)由(2)知Q=120m+1680∵Q随m增加而增加,∴当m=4时,Q最少为2160元.即方案一最节省费用.20.解:(1)6;2;18(2)PD=6﹣2(t﹣12)=30﹣2t,S=eq\f(1,2)AD·PD=eq\f(1,2)×6×(30﹣2t)=90﹣6t,即点P在CD上运动时S与t之间的函数解析式为S=90﹣6t(12≤t≤15).(3)当0≤t≤6时易求得S=3t,将S=10代入,得3t=10,解得t=eq\f(10,3);当12≤t≤15时,S=90﹣6t,将S=10代入,得90﹣6t=10,解得t=13eq\f(1,3).所以当t为eq\f(10,3)或13eq\f(1,3)时,三角形APD的面积为10cm2.21.解:(1)①y=-200x2+400x=-200(x-1)2+200,∴喝酒后1时血液中的酒精含量达到最大值,最大值为200毫克/百毫升.②∵当x=5时,y=45,y=eq\f(k,x)(k>0),∴k=xy=45×5=225.(2)不能驾车去上班.理由:∵晚上20:00到第二天早上7:00,一共有11小时,将x=11代入y=eq\f(225,x),则y=eq\f(255,11)>20,∴第二天早上7:00不能驾车去上班.22.解:(1)①y=400x﹣2600.(5<x≤10).②依题意得:400x﹣2600≥800,解得:x≥8.5,∵5<x≤10,且每份套餐的售价x(元)取整数,∴每份套餐的售价应为9元或10元.(2)能,理由
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 城市交通智能化升级项目协议
- 旅游服务行业从业及表现证明(5篇)
- 机械工程原理及设备维护案例分析
- 农业领域产品种类表
- 艺德家政考试试题及答案
- 六一助残活动方案
- 六一商场品牌活动方案
- 六一孩子活动方案
- 医学考试试题及答案解析
- 六一扁食活动方案
- 漂发染发知识培训课件
- 食品安全防护计划评估表
- 《美国西部拓荒运动》课件
- 口腔护士配台流程
- 担保合同约定协议书(2篇)
- 【MOOC期末】《结构力学》(东南大学)中国大学慕课答案
- 2025年华侨港澳台学生联招考试英语试卷试题(含答案详解)
- 《档案数字化管理》课件
- 2025年益阳市中心医院公开招聘工作人员历年高频重点提升(共500题)附带答案详解
- 建筑法知识培训课件
- 法院报名登记表
评论
0/150
提交评论