2023年抽屉原理教学设计2篇_第1页
2023年抽屉原理教学设计2篇_第2页
2023年抽屉原理教学设计2篇_第3页
2023年抽屉原理教学设计2篇_第4页
2023年抽屉原理教学设计2篇_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

本文格式为Word版,下载可任意编辑——2023年抽屉原理教学设计2篇下面是我为大家整理的2023年抽屉原理教学设计2篇,供大家参考。

桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面至少放两个苹果。这一现象就是我们所说的“抽屉原理〞。下面是为大伙儿带来的2篇《抽屉原理优秀教学设计》,假使能帮助到您,将不胜荣幸。

抽屉原理教学设计篇一

教学目标

1.经历“抽屉原理〞的探究过程,初步了解“抽屉原理〞,会用“抽屉原理〞解决简单的实际问题。

2.通过操作发展学生的类推能力,形成比较抽象的数学思维。

3.通过“抽屉原理〞的灵活应用感受数学的魅力。

教学重、难点

经历“抽屉原理〞的探究过程,理解“抽屉原理〞,并对一些简单实际问题加以“模型化〞。

教学过程

一、问题引入。

师:同学们,你们玩过抢椅子的游戏吗?现在,老师这里准备了3把椅子,请4个同学上来,谁愿来?

1.游戏要求:开始以后,请你们5个都坐在椅子上,每个人必需都坐下。

2.探讨:“不管怎么坐,总有一把椅子上至少坐两个同学〞这句话说得对吗?

游戏开始,让学生初步体验不管怎么坐,总有一把椅子上至少坐两个同学,使学生明确这是现实生活中存在着的一种现象。

引入:不管怎么坐,总有一把椅子上至少坐两个同学?你知道这是什么道理吗?这其中蕴含着一个好玩儿的数学原理,这节课我们就一起来研究这个原理。

二、探究新知

(一)教学例1

1.出示题目:有4枝铅笔,3个盒子,把4枝铅笔放进3个盒子里,怎么放?有几种不同的放法?

师:请同学们实际放放看,谁来展示一下你摆放的状况?(指名摆)根据学生摆的状况,师出示各种状况。

板书:(4,0,0)(3,1,0)(2,2,0)(2,1,1),

问题:4个人坐在3把椅子上,不管怎么坐,总有一把椅子上至少坐两个同学。4支笔放进3个盒子里呢?

引导学生得出:不管怎么放,总有一个盒子里至少有2枝笔。

问题:

(1)“总有〞是什么意思?(一定有)

(2)“至少〞有2枝什么意思?(不少于两只,可能是2枝,也可能是多于2枝?)

教师引导学生总结规律:我们把4枝笔放进3个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。这是我们通过实际操作现了这个结论。那么,你们能不能找到一种更为直接的方法得到这个结论呢?

学生思考并进行组内交流,教师选代表进行总结:假使每个盒子里放1枝铅笔,最多放3枝,剩下的1枝不管放进哪一个盒子里,总有一个盒子里至少有2枝铅笔。首先通过平均分,余下1枝,不管放在那个盒子里,一定会出现“总有一个盒子里一定至少有2枝〞。

问题:把6枝笔放进5个盒子里呢?还用摆吗?把7枝笔放进6个盒子里呢?把8枝笔放进7个盒子里呢?把9枝笔放进8个盒子里呢?……你发现什么?(笔的枝数比盒子数多1,不管怎么放,总有一个盒子里至少有2枝铅笔。)

总结:只要放的铅笔数盒数多1,总有一个盒里至少放进2支。

2.完成课下“做一做〞,学习解决问题。

问题:6只鸽子飞回5个鸽笼,至少有2只鸽子要飞进同一个鸽笼里,为什么?

(1)学生活动—独立思考自主探究

(2)交流、说理活动。

引导学生分析:假使一个鸽笼里飞进一只鸽子,最多飞进4只鸽子,还剩一只,要飞进其中的一个鸽笼里。不管怎么飞,至少有2只鸽子要飞进同一个鸽笼里。所以,“至少有2只鸽子飞进同一个笼里〞的结论是正确的。

总结:用平均分的`方法,就能说明存在“总有一个鸽笼至少有2只鸽子飞进一个个笼里〞。

(二)教学例2

1.出示题目:把5本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?把7本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?把9本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?

(留给学生思考的空间,师巡查了解各种状况)

2.学生汇报,教师给予表扬后并总结:

总结1:把5本书放进2个抽屉里,假使每个抽屉里先放2本,还剩1本,这本书不管放到哪个抽屉里,总有一个抽屉里至少有3本书。

总结2:“总有一个抽屉里的至少有2本〞只要用“商+1〞就可以得到。

问题:假使把5本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?用“商+2〞可以吗?(学生探讨)

引导学生思考:终究是“商+1〞还是“商+余数〞呢?谁的结论对呢?(学生小组里进行研究、探讨。)

总结:用书的本数除以抽屉数,再用所得的商加1,就会发现“总有一个抽屉里至少有商加1本书〞了。

师:同学们的这一发现,称为“抽屉原理〞,“抽屉原理〞又称“鸽笼原理〞,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理〞,也称为“鸽巢原理〞。这一原理在解决实际问题中有着广泛的应用。“抽屉原理〞的应用是千变万化的,用它可以解决大量好玩儿的问题,并且往往能得到一些令人惊异的结果。下面我们应用这一原理解决问题。

(三)学生自学例题3并进行自主交流,试着用手中的用具模拟演示场景。

三、解决问题

四、全课小结

抽屉原理教学设计篇二

教学内容:

教材简析:

《抽屉原理》是义务教育课程标准试验教科书数学六年级下册第五单元数学广角的教学内容。这部分教材通过几个直观例子,借助实际操作,向学生介绍“抽屉原理〞,使学生在理解“抽屉原理〞这一数学方法的基础上,对一些简单的实际问题加以“模型化〞,会用“抽屉原理〞加以解决。“抽屉原理〞在生活中运用广泛,学生在生活中往往能遇到实例,但并不能有意识地从数学的角度来理解和运用“抽屉原理〞。教学中应有意识地让学生理解“抽屉原理〞的“一般化模型〞。

学情分析:

六年级学生的规律思维能力、小组合作能力和动手操作能力都有了较大的提高,加上已有的生活经验,很简单感受到用“抽屉原理〞解决问题带来的乐趣。激趣是新课导入的抓手,喜欢和好奇心比什么都重要,游戏,让学生置身游戏中开始学习,为理解抽屉原理埋下伏笔。通过小组合作,动手操作的探究性学习把抽屉原理较为抽象难懂的内容变为学生感兴趣又易于理解的内容。特别是对教材中的结论“总有、至少〞等字词作了充分的阐释,帮助学生进行较好的“建模〞,使繁杂问题简单化,简单问题模型化,充分表达了新课标要求。

教学目标:

1、使学生初步了解抽屉原理,运用抽屉原理知识解决简单的实际问题。

2、使学生经历抽屉原理的探究过程,通过动手操作、分析、推理等活动,发现、归纳、总结原理。

3、使学生通过“抽屉原理〞的灵活应用感受数学的魅力;提高解决问题的能力和兴趣。

教学重点:

经历“抽屉原理〞的探究过程,初步了解“抽屉原理〞。

教学难点:

理解“抽屉原理〞,并对一些简单实际问题加以“模型化〞。

教学过程:

一、课前游戏,导入新课。

游戏请5名同学到前面来,老师这有4张凳子,老师喊123开始,要求每位同学都必需坐在凳子上,引导:5位同学坐在4张椅子上,不管怎么坐,总有一把凳子上至少坐两个同学。

我们方才做了个小游戏,但小游戏蕴含着一个好玩儿的数学原理。今天我们就来研究这个好玩儿的数学原理——抽屉原理。

[设计意图:把抽象的数学知识与生活中的游戏有机结合起来,使教学从学生熟悉和爱好的游戏引入,让学生在已有生活经验的基础上初步感知抽象的“抽屉原理〞,提高学生的学习兴趣。]

二、通过操作,探究新知

(一)活动一

1、出示题目:把4根小棒,放在3个杯子里,怎么放?有几种不同的放法?

(板书:小棒4杯子3)

提出要求:把所有的摆法都摆出来,看看你会有什么发现?

(1)同桌之间相互合作,动手摆,把各种状况记录下来。

(2)指名一位同学展示不同摆法,教师板书。(4,0,0)(3,1,0)(2,2,0)(2,1,1),

(3)引导学生观测发现:不管怎么放,总有一个杯子里至少有2根小棒。(板书:总有一个杯子里至少有)

(4)师生共同理解“总有〞“至少〞有2枝什么意思?

(5)明确:方才同学们把所有摆法一一列举出来,得到了这样的结论,我们称之为“枚举法〞。

[设计意图:学生通过自己动手操作,在试验中、合作中、探讨中发现规律,分析问题的形成,把动脑思考与动手操作相结合,独立思考与小组合作相结合。让同学之间相互帮助,相互提高,让问题在学生的探究中得到解决。]

2、要把6根小棒放进5杯子里,你感觉会有什么结果呢?

(1)启发学生猜想结果

把6根小棒放入五个杯子里,你感觉一下,不要动手摆,你感觉一下会有什么样的结论?

(2)引导学生选择适合的方法

提出要求:想一个快速而又简单的方法,只摆一种状况,你就可以得到这≤..com≥个结论?

(3)学生尝试操作验证。

(4)全班交流,操作演示。

学生活动后组织交流:先每个杯子摆一根,每个杯子放1跟,5个杯子,就已经放了5根,还有1根不管怎么放,总有一个杯子至少有两根小棒

预设:如遇到每个杯子摆两根,有的杯子空的,这样有说服力吗?有的杯子还空着,要先把每个杯子都装上小棒才行。

(5)明确结论:把6根小棒放进5个杯子里,不管怎么放,总有一个杯子里至少有2枝小棒。

3、课件出示:

把100根小棒放进99个杯子呢?

谈话:要不要也准备100根小棒和99根杯子呢?可以怎么办?

引导用假设法进行思考:假设每个杯子放1跟,99个杯子,就已经放了99根,还有1根不管怎么放,总有一个杯子至少有2根小棒。

这也是数学中一种很重要的方法“假设法〞。

引导学生观测小棒数和杯子数,你有什么发现?

明确:这里的小棒数都比杯子数多1,当小棒数比杯子数多1时,总有一个杯子至少放了两根小棒。

[设计意图:注意勉励学生运用已有的知识对新学习的内容进行联想和猜测,再通过试验和推理验证,培养学生良好的学习和思考习惯。在猜测的基础上进行试

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论