北京市海淀区中考数学一模试卷_第1页
北京市海淀区中考数学一模试卷_第2页
北京市海淀区中考数学一模试卷_第3页
北京市海淀区中考数学一模试卷_第4页
北京市海淀区中考数学一模试卷_第5页
已阅读5页,还剩26页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

AA.一定在点A的左侧B.一定与线段AB的中点重合C.可能在点B的右侧D.一定与点A或点B重合9.二十四节气是中国古代劳动人民长期经验积累的结晶,它与白昼时长密切相关.当春分、秋分时,昼夜时长大致相等;当夏至时,白昼时长最长.如图是一年中部分节气所对应的白昼时长示意图.在下列选项中白昼时长超过13小时的节气是()A.惊蛰B.小满C.秋分D.大寒10.如图为2009年到2015年中关村国家自主创新示范区企业经营技术收入的统计图.下面四个推断:①2009年到2015年技术收入持续增长;②2009年到2015年技术收入的中位数是4032亿;③2009年到2015年技术收入增幅最大的是2015年;④2009年到2011年的技术收入增长的平均数比2013年到2015年技术收入增长的平均数大.其中,正确的是()A.①③B.①④C.②③D.③④二、填空题(本题共18分,每小题3分)11.分解因式:a2b+4ab+4b=.12.如图,AB,CD相交于O点,△AOC∽△BOD,OC:OD=1:2,AC=5,则BD的长为.13.图中的四边形均为矩形.根据图形,写出一个正确的等式:13.图中的四边形均为矩形.根据图形,写出一个正确的等式:.14.某小组做“用频率估计概率”的试验时,统计了某一事件发生的频率,绘制了如图所示的折线图.该事件最有可能是(填写一个你认为正确的序号).①掷一个质地均匀的正六面体骰子,向上一面的点数是2;②掷一枚硬币,正面朝上;③暗箱中有1个红球和2个黄球,这些球除了颜色外无其他差别,从中任取一球是红球.15.如图,在平面直角坐标系xOy中,A(1,1),B(2,2),双曲线y=与线段AB有公共点,则k的取值范围是.16.下面是“作三角形一边中线”的尺规作图过程.已知:△ABC(如图),求作:BC边上的中线AD.作法:如图2,(1)分别以点B,C为圆心,AC,AB长为半径作弧,两弧相交于P点;(2)作直线AP,AP与BC交于D点.所以线段AD就是所求作的中线.请回答:该作图的依据是.三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分)17.(5分)计算:()﹣1+245cos°+|﹣1|﹣(3.14﹣π)0.18.(5分)解不等式3(x﹣1)≤,并把它的解集在数轴上表示出来.19.(5分)如图,在△ABC中,D,E是BC边上两点,AD=AE,∠BAD=∠CAE.求证:AB=AC.20.(5分)关于x的方程x2﹣ax+a=0有两个相等的实数根,求代数式•的值.21.(5分)在平面直角坐标系xOy中,直线l1:y=k1x+b过A(0,﹣3),B(5,2),直线l2:y=k2x+2.(1)求直线l1的表达式;(2)当x≥4时,不等式k1x+b>k2x+2恒成立,请写出一个满足题意的k2的值.22.(5分)某校八年级共有8个班,241名同学,历史老师为了了解新中考模式下该校八年级学生选修历史学科的意向,请小红,小亮,小军三位同学分别进行抽样调查.三位同学调查结果反馈如下:2626.(5分)有这样一个问题:探究函数y=的图象与性质.下面是小文的探究过程,请补充完整:(1)函数y=的自变量x的取值范围是;(2)如表是y与x的几组对应值.x…﹣3﹣2﹣102345…y…﹣﹣﹣02…如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.①观察图中各点的位置发现:点A1和B1,A2和B2,A3和B3,A4和B4均关于某点中心对称,则该点的坐标为;②小文分析函数y=的表达式发现:当x<1时,该函数的最大值为0,则该函数图象在直线x=1左侧的最高点的坐标为;(3)小文补充了该函数图象上两个点(,﹣),(,),①在上图中描出这两个点,并画出该函数的图象;②写出该函数的一条性质:.27.(7分)平面直角坐标系xOy中,抛物线y=mx2﹣2m2x+2交y轴于A点,交直线x=4于B点.(1)抛物线的对称轴为x=(用含m的代数式表示);(2)若AB∥x轴,求抛物线的表达式;【解答】解:∵在【解答】解:∵在Rt△ABC中,∠BAC=90°,AB=AC,∴∠B=∠ACB=45°,∴∠3=180°﹣60°﹣45°=75°,∵a∥b,∴∠2=180°﹣∠3=105°,故选B.【点评】本题考查了等腰直角三角形的性质,平行线的性质,熟练掌握等腰直角三角形的性质是解题的关键.7.如图,AB为⊙O的直径,点C在⊙O上,若∠ACO=50°,则∠B的度数为()A.60°B.50°C.40°D.30°【考点】M5:圆周角定理.【分析】先根据圆周角定理求出∠ACB的度数,再由等腰三角形的性质即可得出结论.【解答】解:∵AB为⊙O的直径,∴∠ACB=90°.∵∠ACO=50°,∴∠BCO=90°﹣50°=40°.∵OC=OB,∴∠B=∠BCO=40°.故选C.【点评】本题考查的是圆周角定理,熟知直径所对的圆周角是直角是解答此题的关键.8.如图,数轴上A,B两点所表示的数互为倒数,则关于原点的说法正确的是()A.一定在点A的左侧B.一定与线段AB的中点重合C.可能在点B的右侧D.一定与点A或点B重合【考点】13:数轴;17:倒数.【分析】根据倒数的定义可知【分析】根据倒数的定义可知A,B两点所表示的数符号相同,依此求解即可.【解答】解:∵数轴上A,B两点所表示的数互为倒数,∴A,B两点所表示的数符号相同,∴原点可能在点B的左侧或右侧.故选:C.【点评】本题考查了数轴,倒数的定义,由题意得到A,B两点所表示的数符号相同是解题的关键.9.二十四节气是中国古代劳动人民长期经验积累的结晶,它与白昼时长密切相关.当春分、秋分时,昼夜时长大致相等;当夏至时,白昼时长最长.如图是一年中部分节气所对应的白昼时长示意图.在下列选项中白昼时长超过13小时的节气是()A.惊蛰B.小满C.秋分D.大寒【考点】E6:函数的图象.【分析】根据函数的图象确定每个节气白昼时长,然后即可确定正确的选项.【解答】解:A、惊蛰白昼时长为11.5小时,不符合题意;B、小满白昼时长为14.5小时,符合题意;C、秋分白昼时长为12.2小时,不符合题意;D、大寒白昼时长为9.8小时,不符合题意,故选B.【点评】考查了函数的图象的知识,解题的关键是能够读懂函数的图象并从中整理出进一步解题的有关信息,难度不大.10.如图为2009年到2015年中关村国家自主创新示范区企业经营技术收入的统计图.下面四个推断:13.图中的四边形均为矩形.根据图形,写出一个正确的等式:(m+n)(m+b)m=2am+bm+ab+(答案不唯一).【考点】4B:多项式乘多项式.【分析】根据图形,从两个角度计算面积即可求出答案.【解答】解:(m+n)(m+b)=m2am+bm+ab+(答案不唯一)故答案为:(m+n)(m+b)m=2+am+bm+ab(答案不唯一)【点评】本题考查多项式乘以多项式,解题的关键是熟练运用运算法则,本题属于基础题型.14.某小组做“用频率估计概率”的试验时,统计了某一事件发生的频率,绘制了如图所示的折线图.该事件最有可能是③(填写一个你认为正确的序号).①掷一个质地均匀的正六面体骰子,向上一面的点数是2;②掷一枚硬币,正面朝上;③暗箱中有1个红球和2个黄球,这些球除了颜色外无其他差别,从中任取一球是红球.【考点】X8:利用频率估计概率;V9:频数(率)分布折线图;X1:随机事件.【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈,计算三个选项的概率,约为者即为正确答案.【解答】解:由折线统计图知,随着试验次数的增加,频率逐渐稳定在0.33,即左右,①中向上一面的点数是2的概率为,不符合题意;②中掷一枚硬币,正面朝上的概率为,不符合题意;③中从中任取一球是红球的概率为,符合题意,故答案为:③.【点评】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.19.如图,在△ABC中,D,E是BC边上两点,AD=AE,∠BAD=∠CAE.求证:AB=AC.【考点】KD:全等三角形的判定与性质.【分析】根据等腰三角形的性质得到∠1=∠2,根据全等三角形的判定和性质即可得到结论.【解答】解:∵AD=AE,∴∠1=∠2,∴180°,﹣∠1=180°﹣∠2.即∠3=∠4,在△ABD与△ACE中,,∴△ABD≌△ACE(ASA),∴AB=AC.【点评】本题考查了全等三角形的判定和性质,等腰三角形的性质,熟练掌握全等三角形的判定和性质是解题的关键.20.关于x的方程x2﹣ax+a=0有两个相等的实数根,求代数式•的值.【考点】AA:根的判别式.【分析】根据判别式的意义得到△=(﹣a)2﹣4a=0,即a2﹣4a=0,再将所求代数式化简为,然后整体代入计算即可.【解答】解:∵关于x的方程x2﹣ax+a=0有两个相等的实数根,∴△=(﹣a)2﹣4a=0,即a2﹣a=04,小红、小亮和小军三人中,你认为哪位同学的调查结果较好地反映了该校八年级同学选修历史的意向,请小红、小亮和小军三人中,你认为哪位同学的调查结果较好地反映了该校八年级同学选修历史的意向,请说出理由,并由此估计全年级有意向选修历史的同学的人数.【考点】V5:用样本估计总体.【分析】根据抽样调查的代表性可知小军的结果较好地反映了该校八年级同学选修历史的意向,再用样本中选择历史的人数所占比例乘以总人数可得答案.【解答】答:小军的数据较好地反映了该校八年级同学选修历史的意向.理由如下:小红仅调查了一个班的同学,样本不具有随机性;小亮只调查了8位历史课代表,样本容量过少,不具有代表性;小军的调查样本容量适中,且能够代表全年级的同学的选择意向.根据小军的调查结果,有意向选择历史的比例约为=;故据此估计全年级选修历史的人数为241×=60.25≈60(人).【点评】本题主要考查用样本估计总体,掌握用样本估计总体是统计的基本思想是解题的关键.23.如图,在▱ABCD中,AE⊥BC于点E点,延长BC至F点使CF=BE,连接AF,DE,DF.(1)求证:四边形AEFD是矩形;(2)若AB=6,DE=8,BF=10,求AE的长.【考点】LD:矩形的判定与性质;L5:平行四边形的性质.【分析】(1)先证明四边形AEFD是平行四边形,再证明∠AEF=90°即可.(2)证明△ABF是直角三角形,由三角形的面积即可得出AE的长.【解答】(1)证明:∵CF=BE,∴CF+EC=BE+EC.即EF=BC.【分析】(【分析】(1)根据2013年至2015年中国和美国对世界经济增长的贡献率绘制统计图或统计表即可;(2)根据2016年中国全年经济增速为6.7%左右,而世界银行全球经济增速为2.4%左右,可得2016年中国经济增速大约是全球经济增速的2.8倍;(3)根据2011年到2016年中国对世界经济增长的贡献率的平均值为30.95%,可预估2017年中国对世界经济增长的贡献率约为31.0%.答案不唯一,预估理由与预估结果相符即可.【解答】解:(1)2013年至2015年中国和美国对世界经济增长的贡献率如图(表)所示:(2)∵2016年中国全年经济增速为6.7%左右,而世界银行全球经济增速为2.4%左右,∴6.7%÷2.4%=2.8,即2016年中国经济增速大约是全球经济增速的2.8倍,故答案为:2.8;(3)从2011年到2016年中国对世界经济增长的贡献率的平均值为:(28.6%+31.7%+32.5%+29.7%+30.0%+33.2%)÷%6=30.95,所以2017年中国对世界经济增长的贡献率约为31.0%.故答案为:31.0%,从2011年到2016年中国对世界经济增长的贡献率平均每年为31.0%左右.(答案不唯一)【点评】本题主要考查了统计图的选择,解题时注意:折线统计图能清楚地反映事物的变化情况,显示数据变化趋势.根据具体问题选择合适的统计图,可以使数据变得清晰直观.25.如图,在△ABC中,点O在边AC上,⊙O与△ABC的边BC,AB分别相切于C,D两点,与边AC交于E点,弦CF与AB平行,与DO的延长线交于M点.(1)求证:点M是CF的中点;∴△DCF∴△DCF是等边三角形,∴∠1=30°,∵BC,AB分别是⊙O的切线,∴BC=BD=a,∠ACB=90°,∴∠2=60°,∴△BCD是等边三角形,∴∠B=60°,∴∠A=30°,∴OD=a,AO=a,∴AE=AO﹣OE=a.【点评】本题考查了切线的性质,等边三角形的判定和性质,解直角三角形,垂径定理,正确的作出辅助线是解题的关键.26.有这样一个问题:探究函数y=的图象与性质.下面是小文的探究过程,请补充完整:(1)函数y=的自变量x的取值范围是x≠1;(2)如表是y与x的几组对应值.x…﹣3﹣2﹣102345…y…﹣﹣﹣02…如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.①观察图中各点的位置发现:点A1和B1,A2和B2,A3和B3,A4和B4均关于某点中心对称,则该点的坐标为(1,1);②小文分析函数y=的表达式发现:当x<1时,该函数的最大值为0,则该函数图象在直线x=1左侧的最高点的坐标为(0,0);(3(3)小文补充了该函数图象上两个点(,﹣),(,),①在上图中描出这两个点,并画出该函数的图象;②写出该函数的一条性质:当x>1时,该函数的最小值为1.【考点】H3:二次函数的性质;H2:二次函数的图象;H7:二次函数的最值.【分析】(1)分式的分母不等于零;(2)①根据中心对称的性质和所对应的点点坐标即可求得,②根据函数的性质求得即可;(3)①根据坐标系中的点,用平滑的直线连接即可;②可以从增减性、渐近性、连续性、与坐标轴交点、图象所在象限等方面作答.【解答】解:(1)依题意得:2x﹣2≠0,解得x≠1,故答案是:x≠1;(2)①点A1和B1,A2和B2,A3和B3,A4和B4均关于某点中心对称,A1(0,0),B2(2,2),∴中心点点坐标为(1,1);②∵当x<1时,该函数的最大值为0,∴该函数图象在直线x=1左侧的最高点的坐标为(0,0);故答案为(1,1);(0,0);(3)①②该函数的性质:∴B∴B′F=FB=FC,∴F是CB′的中点;(3)解:取B′E的中点G,连结GF,∵由(2)得,F为CB′的中点,∴FG∥CE,FG=CE,∵∠ABC=135°,□ABCD中,AD∥BC,∴∠BAD=180°﹣∠ABC=45°,∴由对称性,∠EAD=∠BAD=45°,∵FG∥CE,AB∥CD,∴FG∥AB,∴∠GFA=∠FAB=45°,∴∠FGA=90°,GA=GF,∴FG=sin∠EAD•AF=AF,∴由①,②可得=.【点评】本题考查了全等三角形的判定和性质,平行四边形的性质,平行线的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论