版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,则下列不等式成立的是()A. B.C. D.2.设和分别表示函数的最大值和最小值,则等于()A. B. C. D.3.下列函数所具有的性质,一定成立的是()A. B.C. D.4.已知,则下列结论正确的是()A. B. C. D.不能确定5.已知函数是连续的偶函数,且时,是单调函数,则满足的所有之积为()A. B. C. D.6.若,均为锐角,且,,则等于()A. B. C. D.7.如果执行右面的框图,输入,则输出的数等于()A. B. C. D.8.已知直线,,则与之间的距离为()A. B. C.7 D.9.甲、乙两人约定晚6点到晚7点之间在某处见面,并约定甲若早到应等乙半小时,而乙还有其他安排,若他早到则不需等待,则甲、乙两人能见面的概率()A. B. C. D.10.函数的最小正周期为π,若其图象向左平移个单位后得到的函数为奇函数,则函数f(x)的图象()A.关于点对称 B.关于点对称C.关于直线对称 D.关于直线对称二、填空题:本大题共6小题,每小题5分,共30分。11.如果事件A与事件B互斥,且,,则=.12.当函数取得最大值时,=__________.13.已知等差数列中,,,则该等差数列的公差的值是______.14.在四面体A-BCD中,AB=AC=DB=DC=BC,且四面体A-BCD的最大体积为,则四面体A-BCD外接球的表面积为________.15.若直线与圆有公共点,则实数的取值范围是__________.16.一湖中有不在同一直线的三个小岛A、B、C,前期为开发旅游资源在A、B、C三岛之间已经建有索道供游客观赏,经测量可知AB两岛之间距离为3公里,BC两岛之间距离为5公里,AC两岛之间距离为7公里,现调查后发现,游客对在同一圆周上三岛A、B、C且位于(优弧)一片的风景更加喜欢,但由于环保、安全等其他原因,没办法尽可能一次游览更大面积的湖面风光,现决定在上选择一个点D建立索道供游客游览,经研究论证为使得游览面积最大,只需使得△ADC面积最大即可.则当△ADC面积最大时建立索道AD的长为______公里.(注:索道两端之间的长度视为线段)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,,分别为三个内角,,的对边,.(1)求角的大小;(2)若,的面积为,求边,.18.(1)已知,求的值(2)若,,且,,求的值19.已知函数.(1)求的最小正周期及单调递减区间;(2)若,且,求的值.20.已知函数.(1)求函数的最小正周期;(2)将函数的图象向右平移个单位得到函数的图象,若,求的值域.21.设函数,其中向量,.(1)求函数的最小正周期与单调递减区间;(2)在中,、、分别是角、、的对边,已知,,的面积为,求外接圆半径.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
取特殊值检验,利用排除法得答案。【详解】因为,则当时,故A错;当时,故B错;当时,,故C错;因为且,所以故选D.【点睛】本题考查不等式的基本性质,属于简单题。2、C【解析】
根据余弦函数的值域,确定出的最大值和最小值,即可计算出的值.【详解】因为的值域为,所以的最大值,所以的最小值,所以.故选:C.【点睛】本题考查余弦型函数的最值问题,难度较易.求解形如的函数的值域,注意借助余弦函数的有界性进行分析.3、B【解析】
结合反三角函数的性质,逐项判定,即可求解.【详解】由题意,对于A中,令,则,所以不正确;对于C中,根据反正弦函数的性质,可得,所以是错误的;对于D中,函数当时,则满足,所以不正确,故选:B.【点睛】本题主要考查了反三角函数的性质的应用,其中解答中熟记反三角函数的性质,逐项判定是解答的关键,着重考查了推理与运算能力,属于基础题.4、C【解析】
根据题意,求出与的值,比较易得,变形可得答案.【详解】解:根据题意,,,易得,则有,故选:C.【点睛】本题主要考查不等式的大小比较,属于基础题.5、D【解析】
由y=f(x+2)为偶函数分析可得f(x)关于直线x=2对称,进而分析可得函数f(x)在(2,+∞)和(﹣∞,2)上都是单调函数,据此可得若f(x)=f(1),则有x=1或4﹣x=1,变形为二次方程,结合根与系数的关系分析可得满足f(x)=f(1)的所有x之积,即可得答案.【详解】根据题意,函数y=f(x+2)为偶函数,则函数f(x)关于直线x=2对称,又由当x>2时,函数y=f(x)是单调函数,则其在(﹣∞,2)上也是单调函数,若f(x)=f(1),则有x=1或4﹣x=1,当x=1时,变形可得x2+3x﹣3=0,有2个根,且两根之积为﹣3,当4﹣x=1时,变形可得x2+x﹣13=0,有2个根,且两根之积为﹣13,则满足f(x)=f(1)的所有x之积为(﹣3)×(﹣13)=39;故选:D.【点睛】本题考查抽象函数的应用,涉及函数的对称性与单调性的综合应用,属于综合题.6、B【解析】
先利用两角和的余弦公式求出,通过条件可求得,进而可得.【详解】解:,因为,则,故,故选:B.【点睛】本题考查两角和的正切公式,注意角的范围的确定,是基础题.7、D【解析】试题分析:当时,该程序框图所表示的算法功能为:,故选D.考点:程序框图.8、D【解析】
化简的方程,再根据两平行直线的距离公式,求得两条平行直线间的距离.【详解】,由于平行,故有两条平行直线间的距离公式得距离为,故选D.【点睛】本小题主要考查两条平行直线间的距离公式,属于基础题.9、A【解析】设甲到达时刻为,乙到达时刻为,依题意列不等式组为,画出可行域如下图阴影部分,故概率为.10、C【解析】
利用最小正周期为π,求出的值,根据平移得出,然后利用对称性求解.【详解】因为函数的最小正周期为π,所以,图象向左平移个单位后得到,由得到的函数是奇函数可得,即.令得,,故A,B均不正确;令得,,时可得C正确.故选C.【点睛】本题主要考查三角函数的图像变换和性质.平移变换时注意平移方向和对解析式的影响,性质求解一般利用整体换元意识来处理.二、填空题:本大题共6小题,每小题5分,共30分。11、0.5【解析】
表示事件A与事件B满足其中之一占整体的占比.所以根据互斥事件概率公式求解.【详解】【点睛】此题考查互斥事件概率公式,关键点在于理解清楚题目概率表示的实际含义,属于简单题目.12、【解析】
利用辅助角将函数利用两角差的正弦公式进行化简,求得函数取得最大值时的与的关系,从而求得,,可得结果.【详解】因为函数,其中,,当时,函数取得最大值,此时,∴,,∴故答案为【点睛】本题考查了两角差的正弦公式的逆用,着重考查辅助角公式的应用与正弦函数的性质,属于中档题.13、【解析】
根据等差数列的通项公式即可求解【详解】故答案为:【点睛】本题考查等差通项基本量的求解,属于基础题14、【解析】
当面ABC面与BCD垂直时,四面体A-BCD的体积最大,根据最大体积为求出四面体的边长,又△ABC和△BCD是等腰直角三角形,所以四面体A-BCD外接球的球心位于的中点,从而得到半径,即可求解.【详解】如图所示:当面ABC面与BCD垂直时,四面体A-BCD的体积最大为,又AB=AC=DB=DC=BC,所以△ABC和△BCD是等腰直角三角形,所以四面体A-BCD外接球的球心为的中点,又,解得,,,所以四面体A-BCD外接球的半径故四面体A-BCD外接球的表面积为.【点睛】本题考查多面体的外接圆及相关计算,多面体外接圆问题关键在圆心和半径.15、【解析】
直线与圆有交点,则圆心到直线的距离小于或等于半径.【详解】直线即,圆的圆心为,半径为,若直线与圆有交点,则,解得,故实数的取值范围是.【点睛】本题考查直线与圆的位置关系,点到直线距离公式是常用方法.16、【解析】
根据题意画出草图,根据余弦定理求出的值,设点到的距离为,可得,分析可知取最大时,取最大值,然后再对为中点和不是中点两种情况分析,可得的最大值为,然后再根据圆的有关性质和正弦定理,即可求出结果.【详解】根据题意可作出及其外接圆,连接,交于点,连接,如下图:在中,由余弦定理,由为的内角,可知,所以.设的半径为,点到的距离为,点到的距离为,则,故取最大时,取最大值.①当为中点时,由垂径定理知,即,此时,故;②当不是中点时,不与垂直,设此时与所成角为,则,故;由垂线段最短知,此时;综上,当为中点时,到的距离最大,最大值为;由圆周角定理可知,,由垂径定理知,此时点为优弧的中点,故,则,在中,由正弦定理得所以.所以当△ADC面积最大时建立索道AD的长为公里.故答案为:.【点评】本题考查了正弦定理、余弦定理在解决实际问题中的应用,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】
(1)利用正弦定理化边为角,再依据两角和的正弦公式以及诱导公式,即可求出,进而求得角A的大小:(2)依第一问结果,先由三角形面积公式求出,再利用余弦定理求出,联立即可求解出,的值.【详解】(1)由及正弦定理得,整理得,,,因为,且,所以,,又,所以,.(2)因为的面积,所以,①由余弦定理得,,所以,②联立①②解得,.【点睛】本题主要考查利用正余弦定理解三角形和三角形面积公式的应用,涉及利用两角和的正弦公式、诱导公式对三角函数式的恒等变换.18、(1);(2).【解析】
(1)利用诱导公式化简可得:原式,再分子、分母同除以可得:原式,将代入计算得解.(2)将整理为:,利用两角差的正弦公式整理得:,根据已知求出、即可得解.【详解】解:(1)原式;(2)因为,,所以.又因为,所以,所以.于是.【点睛】本题主要考查了诱导公式及转化思想,还考查了两角差的正弦公式及同角三角函数基本关系,考查计算能力,属于中档题.19、(1)最小正周期为,单调递减区间为(2).【解析】
(1)利用二倍角降幂公式和辅助角公式将函数的解析式化为,利用周期公式可得出函数的最小正周期,然后解不等式可得出函数的单调递减区间;(2)由可得出角的值,再利用两角和的正切公式可计算出的值.【详解】(1).函数的最小正周期为,令,解得.所以,函数的单调递减区间为;(2),即,,.,故,因此.【点睛】本题考查三角函数基本性质,考查两角和的正切公式求值,解题时要利用三角恒等变换思想将三角函数的解析式化简,利用正弦、余弦函数的性质求解,考查运算求解能力,属于中等题.20、(1);(2).【解析】
(1)将已知函数转化为,结合周期的公式,即可求解;(2)利用三角函数的图象变换,求得,再结合三角函数的性质,即求解.【详解】(1)因为,所以的最小正周期;(2)若将函数的图象向右平移个单位,得到函数的图象对应的解析式为,由知,,所以当即时,取得最小值;当即时,取得最大值1,因此的值域为.【点睛】本题主要考查了三角函数的恒等变换,以及正项型函数的图象与性质的应用,其中解答中熟记三角函数的图象与性质是解答的关键,着重考查了推理与运算能力,属于基础题.21、(1),的单调递减区间是;(2).
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 44626.2-2025微细气泡技术表征用样品中气泡消除方法第2部分:消除技术
- 物业管理与维修操作规范(标准版)
- 2025年企业财务报表分析与应用手册
- 财务报告编制与审查制度
- 办公室员工培训计划执行制度
- 办公室办公用品采购与审批制度
- 2026年重庆远达烟气治理特许经营有限公司科技分公司招聘备考题库及答案详解一套
- 2026年重庆一国企招聘11人备考题库完整参考答案详解
- 2026年达拉特旗工人文化宫招聘备考题库带答案详解
- 2026年集美区双岭小学产假顶岗教师招聘备考题库及答案详解参考
- 2025年煤矿安全规程新增变化条款考试题库及答案
- 2025年教师师德师风自查问题清单及整改措施范文
- 2026年广东农垦火星农场有限公司公开招聘作业区管理人员备考题库及参考答案详解
- 养老护理服务的法律监管与执法
- 降排水应急预案(3篇)
- 隧道施工清包合同(3篇)
- 围手术期疼痛的动物模型与转化研究
- 八年级地理长江流域综合教学设计方案
- 工业旅游综合规划与管理手册
- 国家安全生产十五五规划
- 代位追偿培训课件
评论
0/150
提交评论