版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若等差数列的前10项之和大于其前21项之和,则的值()A.大于0 B.等于0 C.小于0 D.不能确定2.体积为的正方体的顶点都在同一球面上,则该球面的表面积为A. B. C. D.3.不等式的解集是()A. B.C. D.4.的内角的对边分别为,,,若的面积为,则A. B. C. D.5.定义运算:.若不等式的解集是空集,则实数的取值范围是()A. B.C. D.6.如图,设是正六边形的中心,则与相等的向量为()A. B. C. D.7.已知数列的通项公式是,则该数列的第五项是()A. B. C. D.8.将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积为()A. B. C. D.9.已知空间中两点和的距离为6,则实数的值为()A.1 B.9 C.1或9 D.﹣1或910.一个正四棱锥的底面边长为2,高为,则该正四棱锥的全面积为A.8 B.12 C.16 D.20二、填空题:本大题共6小题,每小题5分,共30分。11.某扇形的面积为1,它的周长为4cm,那么扇形的圆心角的大小为____________.12.数列满足,则等于______.13.如图,在正方体中,点是棱上的一个动点,平面交棱于点.下列命题正确的为_______________.①存在点,使得//平面;②对于任意的点,平面平面;③存在点,使得平面;④对于任意的点,四棱锥的体积均不变.14.函数的初相是__________.15.已知扇形的半径为6,圆心角为,则扇形的弧长为______.16.由于坚持经济改革,我国国民经济继续保持了较稳定的增长.某厂2019年的产值是100万元,计划每年产值都比上一年增加,从2019年到2022年的总产值为______万元(精确到万元).三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,角,,所对的边分别为,,,.(1)求角的大小;(2)若,的面积为,求及的值.18.设函数,定义域为.(1)求函数的最小正周期,并求出其单调递减区间;(2)求关于的方程的解集.19.某校200名学生的数学期中考试成绩频率分布直方图如图所示,其中成绩分组区间是.(1)求图中m的值;(2)根据频率分布直方图,估计这200名学生的平均分(同一组中的数据用该组区间的中间值作代表)和中位数(四舍五入取整数);(3)若这200名学生的数学成绩中,某些分数段的人数x与英语成绩相应分数段的人数y之比如下表所示,求英语成绩在的人数.分数段[70,80)[80,90)[90,100)[100,110)[110,120)x:y1:22:16:51:21:120.如图,在平面四边形ABCD中,,,,.(1)若点E为边CD上的动点,求的最小值;(2)若,,,求的值.21.设等差数列的前项和为,且.(I)求数列的通项公式;(II)设为数列的前项和,求.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
根据条件得到不等式,化简后可判断的情况.【详解】据题意:,则,所以,即,则:,故选C.【点睛】本题考查等差数列前项和的应用,难度较易.等差数列前项和之间的关系可以转化为与的关系.2、A【解析】试题分析:因为正方体的体积为8,所以棱长为2,所以正方体的体对角线长为,所以正方体的外接球的半径为,所以该球的表面积为,故选A.【考点】正方体的性质,球的表面积【名师点睛】与棱长为的正方体相关的球有三个:外接球、内切球和与各条棱都相切的球,其半径分别为、和.3、D【解析】
把不等式,化简为不等式,即可求解,得到答案.【详解】由题意,不等式,可化为,即,解得或,所以不等式的解集为.故选:D.【点睛】本题主要考查了分式不等式的求解,其中解答中熟记分式不等式的解法,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.4、C【解析】分析:利用面积公式和余弦定理进行计算可得。详解:由题可知所以由余弦定理所以故选C.点睛:本题主要考查解三角形,考查了三角形的面积公式和余弦定理。5、B【解析】
根据定义可得的解集是空集,即恒成立,再对分类讨论可得结果.【详解】由题意得的解集是空集,即恒成立.当时,不等式即为,不等式恒成立;当时,若不等式恒成立,则即解得.综上可知:.故选:B【点睛】本题考查了二次不等式的恒成立问题,考查了分类讨论思想,属于基础题.6、D【解析】
容易看出,四边形是平行四边形,从而得出.【详解】根据图形看出,四边形是平行四边形故选:【点睛】本题考查相等向量概念辨析,属于基础题.7、A【解析】
代入即可得结果.【详解】解:由已知,故选:A.【点睛】本题考查数列的项和项数之间的关系,是基础题.8、C【解析】
试题分析:将边长为1的正方形以其一边所在直线为旋转轴旋转一周得到的几何体为底面为半径为的圆、高为1的圆柱,其侧面展开图为长为,宽为1,所以所得几何体的侧面积为.故选C.9、C【解析】
利用空间两点间距离公式求出值即可。【详解】由两点之间距离公式,得:,化为:,解得:或9,选C。【点睛】空间两点间距离公式:。代入数据即可,属于基础题目。10、B【解析】
先求侧面三角形的斜高,再求该正四棱锥的全面积.【详解】由题得侧面三角形的斜高为,所以该四棱锥的全面积为.故选B【点睛】本题主要考查几何体的边长的计算和全面积的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据扇形的面积和周长列方程组解得半径和弧长,再利用弧长公式可求得结果.【详解】设扇形的半径为,弧长为,圆心角为,则,解得,所以.故答案为:【点睛】本题考查了扇形的面积公式,考查了扇形中弧长公式,属于基础题.12、15【解析】
先由,可求出,然后由,代入已知递推公式即可求解。【详解】故答案为15.【点睛】本题考查是递推公式的应用,是一道基础题。13、①②④【解析】
根据线面平行和线面垂直的判定定理,以及面面垂直的判定定理和性质分别进行判断即可.【详解】①当为棱上的一中点时,此时也为棱上的一个中点,此时//,满足//平面,故①正确;②连结,则平面,因为平面,所以平面平面,故②正确;③平面,不可能存在点,使得平面,故③错误;④四棱锥的体积等于,设正方体的棱长为1.∵无论、在何点,三角形的面积为为定值,三棱锥的高,保持不变,三角形的面积为为定值,三棱锥的高为,保持不变.∴四棱锥的体积为定值,故④正确.故答案为①②④.【点睛】本题主要考查空间直线和平面平行或垂直的位置关系的判断,解答本题的关键正确利用分割法求空间几何体的体积的方法,综合性较强,难度较大.14、【解析】
根据函数的解析式即可求出函数的初相.【详解】,初相为.故答案为:【点睛】本题主要考查的物理意义,属于简单题.15、【解析】
先将角度化为弧度,再根据弧长公式求解.【详解】因为圆心角,所以弧长.故答案为:【点睛】本题考查了角度和弧度的互化以及弧长公式的应用问题,属于基础题.16、464【解析】
根据等比数列求和公式求解【详解】由题意得从2019年到2022年各年产值构成以100为首项,1.1为公比的等比数列,其和为【点睛】本题考查等比数列应用以及等比数列求和公式,考查基本分析求解能力,属基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2),【解析】
(1)化简等式,即可求出角.(2)利用角C的余弦公式,求出c与a的关系式,再由正弦定理求出角A的正弦值,再结合面积公式求出c的值.【详解】(1)∵,∴,即,∴.又,∴.(2)∵,∴,即,∴.∵,且,∴,∴,由正弦定理得,解得.【点睛】本题考查利用解三角形,属于基础题.18、(1)最小正周期为,单调递减区间为;(2).【解析】
(1)利用两角差的余弦公式、二倍角降幂公式以及辅助角公式将函数的解析式化简为,由周期公式可得出函数的最小正周期,由,解出的范围得出函数的单调递减区间;(2)由,得出,解出该方程可得出结果.【详解】(1),所以,函数的最小正周期为,由,得,因此,函数的单调递减区间为;(2)令,得,或,解得或,因此,关于的方程的解集为.【点睛】本题考查三角函数基本性质的求解,解题时要将三角函数解析式利用三角恒等变换思想进行化简,然后再利用相应公式或图象进行求解,考查分析问题和运算求解能力,属于中等题.19、(1)(2)平均分为,中位数为(3)140人【解析】
(1)由题得,解方程即得解;(2)利用频率分布直方图中平均数和中位数的计算公式估计这200名学生的平均分和中位数;(3)分别计算每一段的人数即得解.【详解】(1)由,解得.(2)频率分布直方图中每一个小矩形的面积乘以底边中点的横坐标之和即为平均数,即估计平均数为.设中位数为,则解得(3)由频率分布直方图可求出这200名学生的数学成绩在,,的分别有60人,40人,10人,按照表中给的比例,则英语成绩在,,的分别有50人,80人,10人,所以英语成绩在的有140人.【点睛】本题主要考查频率分布直方图的性质,考查频率分布直方图中平均数和中位数的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.20、(1);(2)【解析】
(1)建立平面直角坐标系,将范围问题转化为函数的最值问题,进而求解函数的最值即可;(2)根据、两点的位置,可以写出对应的坐标,从而在直角三角形中求得的正余弦,进而用余弦的和角公式进行求解.【详解】(1)设AC,BD相交于O,由于,所以,所以,因此,以DB所在的直线为x轴,以AC所在的直线为y轴建立平面直角坐标系如下图所示:故,,,.因为直线CD的方程为,所以可设.所以,.所以,当时,最小为.(2)因为,,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 延续护理中护士与患者信任关系构建
- 康复机器人的投入产出比与卫生经济学评价
- 干预效果评价与质量改进
- 干细胞治疗后肝功能管理策略优化
- 帕金森病运动并发症的全程管理策略
- 寺庙安全宣传教育
- 土地征收补偿协议书违约
- 差分隐私保护下的医疗统计发布策略
- 川崎病冠瘤患儿的贫血纠正策略
- 护理管理与护理管理实践
- 2026年教师资格之中学教育知识与能力考试题库300道含答案(a卷)
- 2025仁怀市公共交通服务有限公司招聘招聘141人考试笔试备考试题及答案解析
- 2026年电商评价管理策略与产品口碑优化实操手册
- 小学STEM综合活动教学设计方案
- 2023年和田地区直遴选考试真题汇编附答案解析
- 机械加工质量检测标准
- 四川省广安市岳池县2024-2025学年六年级上学期期末英语试题
- 电子厂安全生产检查表及规范
- 新疆赛乃姆舞蹈课件
- 2025年大学《社会学-社会心理学》考试参考题库及答案解析
- 税务人员考试题库及答案
评论
0/150
提交评论